ترغب بنشر مسار تعليمي؟ اضغط هنا

Deuteration of ammonia in the starless core Ophiuchus/H-MM1

84   0   0.0 ( 0 )
 نشر من قبل Jorma Harju
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ammonia and its deuterated isotopologues probe physical conditions in dense molecular cloud cores. With the aim of testing the current understanding of the spin-state chemistry of these molecules, we observed spectral lines of NH3, NH2D, NHD2, ND3, and N2D+ towards a dense, starless core in Ophiuchus with the APEX, GBT, and IRAM 30-m telescopes. The observations were interpreted using a gas-grain chemistry model combined with radiative transfer calculations. The chemistry model distinguishes between the different nuclear spin states of light hydrogen molecules, ammonia, and their deuterated forms. High deuterium fractionation ratios with NH2D/NH3=0.4, NHD2/NH2D=0.2, and ND3/NHD2=0.06 were found in the core. The observed ortho/para ratios of NH2D and NHD2 are close to the corresponding nuclear spin statistical weights. The chemistry model can approximately reproduce the observed abundances, but predicts uniformly too low ortho/para-NH2D, and too large ortho/para-NHD2 ratios. The longevity of N2H+ and NH3 in dense gas, which is prerequisite to their strong deuteration, can be attributed to the chemical inertia of N2 on grain surfaces. The discrepancies between the chemistry model and the observations are likely to be caused by the fact that the model assumes complete scrambling in principal gas-phase deuteration reactions of ammonia, which means that all the nuclei are mixed in reactive collisions. If, instead, these reactions occur through proton hop/hydrogen abstraction processes, statistical spin ratios are to be expected. The present results suggest that while the deuteration of ammonia changes with physical conditions and time, the nuclear spin ratios of ammonia isotopologues do not probe the evolutionary stage of a cloud.



قيم البحث

اقرأ أيضاً

Compact substructure is expected to arise in a starless core as mass becomes concentrated in the central region likely to form a protostar. Additionally, multiple peaks may form if fragmentation occurs. We present ALMA Cycle 2 observations of 60 star less and protostellar cores in the Ophiuchus molecular cloud. We detect eight compact substructures which are >15 arcsec from the nearest Spitzer YSO. Only one of these has strong evidence for being truly starless after considering ancillary data, e.g., from Herschel and X-ray telescopes. An additional extended emission structure has tentative evidence for starlessness. The number of our detections is consistent with estimates from a combination of synthetic observations of numerical simulations and analytical arguments. This result suggests that a similar ALMA study in the Chamaeleon I cloud, which detected no compact substructure in starless cores, may be due to the peculiar evolutionary state of cores in that cloud.
We imaged two starless molecular cloud cores, TUKH083 and TUKH122, in the Orion A giant molecular cloud in the CCS and ammonia (NH$_3$) emission with the Very Large Array. TUKH122 contains one NH$_3$ core TUKH122-n, which is elongated and has a smoot h oval boundary. Where observed, the CCS emission surrounds the NH$_3$ core. This configuration resembles that of the N$_2$H$^+$ and CCS distribution in the Taurus starless core L1544, a well-studied example of a dense prestellar core exhibiting infall motions. The linewidth of TUKH122-n is narrow (0.20 km s$^{-1}$) in the NH$_3$ emission line and therefore dominated by thermal motions. The smooth oval shape of the core boundary and narrow linewidth in NH$_3$ seem to imply that TUKH122-n is dynamically relaxed and quiescent. TUKH122-n is similar to L1544 in the kinetic temperature (10 K), linear size (0.03 pc), and virial mass ($sim$ 2 $M_{odot}$). Our results strongly suggest that TUKH122-n is on the verge of star formation. TUKH122-n is embedded in the 0.2 pc massive (virial mass $sim$ 30 $M_{odot}$) turbulent parent core, while the L1544 NH$_3$ core is embedded in the 0.2 pc less-massive (virial mass $sim$ 10 $M_{odot}$) thermal parent core. TUKH083 shows complicated distribution in NH$_3$, but was not detected in CCS. The CCS emission toward TUKH083 appears to be extended, and is resolved out in our interferometric observations.
We report 850~$mu$m dust polarization observations of a low-mass ($sim$12 $M_{odot}$) starless core in the $rho$ Ophiuchus cloud, Ophiuchus C, made with the POL-2 instrument on the James Clerk Maxwell Telescope (JCMT) as part of the JCMT B-fields In STar-forming Region Observations (BISTRO) survey. We detect an ordered magnetic field projected on the plane of sky in the starless core. The magnetic field across the $sim$0.1~pc core shows a predominant northeast-southwest orientation centering between $sim$40$^circ$ to $sim$100$^circ$, indicating that the field in the core is well aligned with the magnetic field in lower-density regions of the cloud probed by near-infrared observations and also the cloud-scale magnetic field traced by Planck observations. The polarization percentage ($P$) decreases with an increasing total intensity ($I$) with a power-law index of $-$1.03 $pm$ 0.05. We estimate the plane-of-sky field strength ($B_{mathrm{pos}}$) using modified Davis-Chandrasekhar-Fermi (DCF) methods based on structure function (SF), auto-correlation (ACF), and unsharp masking (UM) analyses. We find that the estimates from the SF, ACF, and UM methods yield strengths of 103 $pm$ 46 $mu$G, 136 $pm$ 69 $mu$G, and 213 $pm$ 115 $mu$G, respectively. Our calculations suggest that the Ophiuchus C core is near magnetically critical or slightly magnetically supercritical (i.e. unstable to collapse). The total magnetic energy calculated from the SF method is comparable to the turbulent energy in Ophiuchus C, while the ACF method and the UM method only set upper limits for the total magnetic energy because of large uncertainties.
Deuteration has been used as a tracer of the evolutionary phases of low- and high-mass star formation. The APEX Telescope Large Area Survey (ATLASGAL) provides an important repository for a detailed statistical study of massive star-forming clumps in the inner Galactic disc at different evolutionary phases. We study the amount of deuteration using NH2D in a representative sample of high-mass clumps discovered by the ATLASGAL survey covering various evolutionary phases of massive star formation. Unbiased spectral line surveys at 3 mm were thus conducted towards ATLASGAL clumps between 85 and 93 GHz with the Mopra telescope and from 84 to 115 GHz using the IRAM 30m telescope. A subsample was followed up in the NH2D transition at 74 GHz with the IRAM 30m telescope. We determined the deuterium fractionation from the column density ratio of NH2D and NH3 and measured the NH2D excitation temperature for the first time from the simultaneous modelling of the 74 and 110 GHz line using MCWeeds. We find a large range of the NH2D to NH3 column density ratio up to 1.6+/-0.7 indicating a high degree of NH3 deuteration in a subsample of the clumps. Our analysis yields a clear difference between NH3 and NH2D rotational temperatures for a fraction of the sources. We therefore advocate observation of the NH2D transitions at 74 and 110 GHz simultaneously to determine the NH2D temperature directly. We determine a median ortho-to-para column density ratio of 3.7+/-1.2. The high detection rate of NH2D confirms a high deuteration previously found in massive star-forming clumps. Using the excitation temperature of NH2D instead of NH3 is needed to avoid an overestimation of deuteration. We measure a higher detection rate of NH2D in sources at early evolutionary stages. The deuterium fractionation shows no correlation with evolutionary tracers such as the NH3 (1,1) line width, or rotational temperature.
In dense starless and protostellar cores, the relative abundance of deuterated species to their non-deuterated counterparts can become orders of magnitude greater than in the local interstellar medium. This enhancement proceeds through multiple pathw ays in the gas phase and on dust grains, where the chemistry is strongly dependent on the physical conditions. In this Chapter, we discuss how sensitive, high resolution observations with the ngVLA of emission from deuterated molecules will trace both the dense gas structure and kinematics on the compact physical scales required to track the gravitational collapse of star-forming cores and the subsequent formation of young protostars and circumstellar accretion regions. Simultaneously, such observations will play a critical role in tracing the chemical history throughout the various phases of star and planet formation. Many low-J transitions of key deuterated species, along with their undeuterated counterparts, lie within the 60-110 GHz frequency window, the lower end of which is largely unavailable with current facilities and instrumentation. The combination of sensitivity and angular resolution provided only by the ngVLA will enable unparalleled detailed studies of the physics and chemistry of the earliest stages of star formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا