ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological classification of sesquilinear forms: reduction to the nonsingular case

92   0   0.0 ( 0 )
 نشر من قبل Vladimir Sergeichuk V.
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Two sesquilinear forms $Phi:mathbb C^mtimesmathbb C^mto mathbb C$ and $Psi:mathbb C^ntimesmathbb C^nto mathbb C$ are called topologically equivalent if there exists a homeomorphism $varphi :mathbb C^mto mathbb C^n$ (i.e., a continuous bijection whose inverse is also a continuous bijection) such that $Phi(x,y)=Psi(varphi (x),varphi (y))$ for all $x,yin mathbb C^m$. R.A.Horn and V.V.Sergeichuk in 2006 constructed a regularizing decomposition of a square complex matrix $A$; that is, a direct sum $SAS^*=Roplus J_{n_1}oplusdotsoplus J_{n_p}$, in which $S$ and $R$ are nonsingular and each $J_{n_i}$ is the $n_i$-by-$n_i$ singular Jordan block. In this paper, we prove that $Phi$ and $Psi$ are topologically equivalent if and only if the regularizing decompositions of their matrices coincide up to permutation of the singular summands $J_{n_i}$ and replacement of $Rinmathbb C^{rtimes r}$ by a nonsingular matrix $Rinmathbb C^{rtimes r}$ such that $R$ and $R$ are the matrices of topologically equivalent forms. Analogous results for real and complex bilinear forms are also obtained.



قيم البحث

اقرأ أيضاً

A natural way to obtain a system of partial differential equations on a manifold is to vary a suitably defined sesquilinear form. The sesquilinear forms we study are Hermitian forms acting on sections of the trivial $mathbb{C}^n$-bundle over a smooth $m$-dimensional manifold without boundary. More specifically, we are concerned with first order sesquilinear forms, namely, those generating first order systems. Our goal is to classify such forms up to $GL(n,mathbb{C})$ gauge equivalence. We achieve this classification in the special case of $m=4$ and $n=2$ by means of geometric and topological invariants (e.g. Lorentzian metric, spin/spin$^c$ structure, electromagnetic covector potential) naturally contained within the sesquilinear form - a purely analytic object. Essential to our approach is the interplay of techniques from analysis, geometry, and topology.
171 - Rosario Corso 2018
The possibility of defining sesquilinear forms starting from one or two sequences of elements of a Hilbert space is investigated. One can associate operators to these forms and in particular look for conditions to apply representation theorems of ses quilinear forms, such as Katos theorems. The associated operators correspond to classical frame operators or weakly-defined multipliers in the bounded context. In general some properties of them, such as the invertibility and the resolvent set, are related to properties of the sesquilinear forms. As an upshot of this approach new features of sequences (or pairs of sequences) which are semi-frames (or reproducing pairs) are obtained.
We consider the problem of classifying oriented cycles of linear mappings $F^pto F^qtodotsto F^rto F^p$ over a field $F$ of complex or real numbers up to homeomorphisms in the spaces $F^p,F^q,dots,F^r$. We reduce it to the problem of classifying line ar operators $F^nto F^n$ up to homeomorphism in $F^n$, which was studied by N.H. Kuiper and J.W. Robbin [Invent. Math. 19 (2) (1973) 83-106] and by other authors.
142 - Rosario Corso 2019
Sesquilinear forms which are not necessarily positive may have a different behavior, with respect to a positive form, on each side. For this reason a Lebesgue-type decomposition on one side is provided for generic forms satisfying a boundedness condition.
104 - Dominique Lecomte 2016
The literature provides dichotomies involving homomorphisms (like the G 0 dichotomy) or reductions (like the characterization of sets potentially in a Wadge class of Borel sets, which holds on a subset of a product). However, part of the motivation b ehind the latter result was to get reductions on the whole product, like in the classical notion of Borel reducibility considered in the study of analytic equivalence relations. This is not possible in general. We show that, under some acyclicity (and also topological) assumptions, this is widely possible. In particular, we prove that, for any non-self dual Borel class {Gamma}, there is a concrete finite =< c-antichain basis for the class of Borel relations, whose closure has acyclic symmetrization, and which are not potentially in {Gamma}. Along similar lines, we provide a sufficient condition for =< c-reducing G 0. We also prove a similar result giving a minimum set instead of an antichain if we allow rectangular reductions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا