ترغب بنشر مسار تعليمي؟ اضغط هنا

Hot super-Earths stripped by their host stars

86   0   0.0 ( 0 )
 نشر من قبل Mia Lundkvist
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Simulations predict that hot super-Earth sized exoplanets can have their envelopes stripped by photo-evaporation, which would present itself as a lack of these exoplanets. However, this absence in the exoplanet population has escaped a firm detection. Here we demonstrate, using asteroseismology on a sample of exoplanets and exoplanet candidates observed during the Kepler mission that, while there is an abundance of super-Earth sized exoplanets with low incident fluxes, none are found with high incident fluxes. We do not find any exoplanets with radii between 2.2 and 3.8 Earth radii with incident flux above 650 times the incident flux on Earth. This gap in the population of exoplanets is explained by evaporation of volatile elements and thus supports the predictions. The confirmation of a hot-super-Earth desert caused by evaporation will add an important constraint on simulations of planetary systems, since they must be able to reproduce the dearth of close-in super-Earths.



قيم البحث

اقرأ أيضاً

Hot super-Earths likely possess minimal atmospheres established through vapor saturation equilibrium with the ground. We solve the hydrodynamics of these tenuous atmospheres at the surface of Corot-7b, Kepler 10b and 55 Cnc-e, including idealized tre atments of magnetic drag and ohmic dissipation. We find that atmospheric pressures remain close to their local saturation values in all cases. Despite the emergence of strongly supersonic winds which carry sublimating mass away from the substellar point, the atmospheres do not extend much beyond the day-night terminators. Ground temperatures, which determine the planetary thermal (infrared) signature, are largely unaffected by exchanges with the atmosphere and thus follow the effective irradiation pattern. Atmospheric temperatures, however, which control cloud condensation and thus albedo properties, can deviate substantially from the irradiation pattern. Magnetic drag and ohmic dissipation can also strongly impact the atmospheric behavior, depending on atmospheric composition and the planetary magnetic field strength. We conclude that hot super-Earths could exhibit interesting signatures in reflection (and possibly in emission) which would trace a combination of their ground, atmospheric and magnetic properties.
79 - A. F. Lanza 2017
The interaction between the magnetic fields of late-type stars and their close-by planets may produce stellar flares as observed in active binary systems. However, in spite of several claims, conclusive evidence is still lacking. We estimate the magn etic energy available in the interaction using analytical models to provide an upper bound to the expected flare energy. We investigate three different mechanisms leading to magnetic energy release. The first two can release an energy up to $(0.2-1.2) B^{2}_{0} R^{3}/mu$, where $B_{0}$ is the surface field of the star, $R$ its radius, and $mu$ the magnetic permeability of the plasma. They operate in young active stars whose coronae have closed magnetic field lines up to the distance of their close-by planets that can trigger the energy release. The third mechanism operates in weakly or moderately active stars having a coronal field with predominantly open field lines at the distance of their planets. The released energy is of the order of $(0.002-0.1) B^{2}_{0} R^{3}/mu$ and depends on the ratio of the planetary to the stellar fields, thus allowing an indirect measurement of the former when the latter is known. We compute the released energy for different separations of the planet and different stellar parameters finding the conditions for the operation of the proposed mechanisms. An application to eight selected systems is presented. The computed energies and dissipation timescales are in agreement with flare observations in the eccentric system HD 17156 and in the circular systems HD 189733 and HD 179949. This kind of star-planet interaction can be unambiguously identified by the higher flaring frequency expected close to periastron in eccentric systems.
Observations have confirmed the existence of multiple-planet systems containing a hot Jupiter and smaller planetary companions. Examples include WASP-47, Kepler-730, and TOI-1130. We examine the plausibility of forming such systems in situ using $N$- body simulations that include a realistic treatment of collisions, an evolving protoplanetary disc and eccentricity/inclination damping of planetary embryos. Initial conditions are constructed using two different models for the core of the giant planet: a seed-model and an equal-mass-model. The former has a more massive protoplanet placed among multiple small embryos in a compact configuration. The latter consists only of equal-mass embryos. Simulations of the seed-model lead to the formation of systems containing a hot Jupiter and super-Earths. The evolution consistently follows four distinct phases: early giant impacts; runaway gas accretion onto the seed protoplanet; disc damping-dominated evolution of the embryos orbiting exterior to the giant; a late chaotic phase after dispersal of the gas disc. Approximately 1% of the equal-mass simulations form a giant and follow the same four-phase evolution. Synthetic transit observations of the equal-mass simulations provide an occurrence rate of 0.26% for systems containing a hot Jupiter and an inner super-Earth, similar to the 0.2% occurrence rate from actual transit surveys, but simulated hot Jupiters are rarely detected as single transiting planets, in disagreement with observations. A subset of our simulations form two close-in giants, similar to the WASP-148 system. The scenario explored here provides a viable pathway for forming systems with unusual architectures, but does not apply to the majority of hot Jupiters.
158 - Kaspar von Braun 2017
In order to understand the exoplanet, you need to understand its parent star. Astrophysical parameters of extrasolar planets are directly and indirectly dependent on the properties of their respective host stars. These host stars are very frequently the only visible component in the systems. This book describes our work in the field of characterization of exoplanet host stars using interferometry to determine angular diameters, trigonometric parallax to determine physical radii, and SED fitting to determine effective temperatures and luminosities. The interferometry data are based on our decade-long survey using the CHARA Array. We describe our methods and give an update on the status of the field, including a table with the astrophysical properties of all stars with high-precision interferometric diameters out to 150 pc (status Nov 2016). In addition, we elaborate in more detail on a number of particularly significant or important exoplanet systems, particularly with respect to (1) insights gained from transiting exoplanets, (2) the determination of system habitable zones, and (3) the discrepancy between directly determined and model-based stellar radii. Finally, we discuss current and future work including the calibration of semi-empirical methods based on interferometric data.
190 - Wei Zhu 2015
Using the Kepler planet sample from Buchhave et al. and the statistical method clarified by Schlaufman, I show that the shorter-period super-Earths have a different dependence on the host star metallicity from the longer-period super-Earths, with the transition period being in the period range from 70 to 100 days. The hosts of shorter-period super-Earths are on average more metal-rich than those of longer-period super-Earths. The existence of such a transition period cannot be explained by any single theory of super-Earth formation, suggesting that super-Earths have formed via at least two mechanisms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا