ﻻ يوجد ملخص باللغة العربية
We present results from a new approach to learning and plasticity in neuromorphic hardware systems: to enable flexibility in implementable learning mechanisms while keeping high efficiency associated with neuromorphic implementations, we combine a general-purpose processor with full-custom analog elements. This processor is operating in parallel with a fully parallel neuromorphic system consisting of an array of synapses connected to analog, continuous time neuron circuits. Novel analog correlation sensor circuits process spike events for each synapse in parallel and in real-time. The processor uses this pre-processing to compute new weights possibly using additional information following its program. Therefore, learning rules can be defined in software giving a large degree of flexibility. Synapses realize correlation detection geared towards Spike-Timing Dependent Plasticity (STDP) as central computational primitive in the analog domain. Operating at a speed-up factor of 1000 compared to biological time-scale, we measure time-constants from tens to hundreds of micro-seconds. We analyze variability across multiple chips and demonstrate learning using a multiplicative STDP rule. We conclude, that the presented approach will enable flexible and efficient learning as a platform for neuroscientific research and technological applications.
Flexible metal oxide/graphene oxide hybrid multi-gate neuron transistors were fabricated on flexible graphene substrates. Dendritic integrations in both spatial and temporal modes were successfully emulated, and spatiotemporal correlated logics were
We review our current software tools and theoretical methods for applying the Neural Engineering Framework to state-of-the-art neuromorphic hardware. These methods can be used to implement linear and nonlinear dynamical systems that exploit axonal tr
We show that a model of the hippocampus introduced recently by Scarpetta, Zhaoping & Hertz ([2002] Neural Computation 14(10):2371-96), explains the theta phase precession phenomena. In our model, the theta phase precession comes out as a consequence
Neuromorphic networks based on nanodevices, such as metal oxide memristors, phase change memories, and flash memory cells, have generated considerable interest for their increased energy efficiency and density in comparison to graphics processing uni
Neuronal firing activities have attracted a lot of attention since a large population of spatiotemporal patterns in the brain is the basis for adaptive behavior and can also reveal the signs for various neurological disorders including Alzheimers, sc