ﻻ يوجد ملخص باللغة العربية
Providing the microscopic behavior of a thermalization process has always been an intriguing issue. There are several models of thermalization, which often requires interaction of the system under consideration with the microscopic constituents of the macroscopic heat bath. With an aim to simulate such a thermalization process, here we look at the thermalization of a two-level quantum system under the action of a Markovian master equation corresponding to memory-less action of a heat bath, kept at a certain temperature, using a single-qubit ancilla. A two-qubit interaction Hamiltonian ($H_{th}$, say) is then designed -- with a single-qubit thermal state as the initial state of the ancilla -- which gives rise to thermalization of the system qubit in the infinite time limit. Further, we study the general form of Hamiltonian, of which ours is a special case, and look for the conditions for thermalization to occur. We also derive a Lindblad-like non-Markovian master equation for the system dynamics under the general form of system-ancilla Hamiltonian.
We study the heat statistics of a multi-level $N$-dimensional quantum system monitored by a sequence of projective measurements. The late-time, asymptotic properties of the heat characteristic function are analyzed in the thermodynamic limit of a hig
The quantum phase-space dynamics driven by hyperbolic Poschl-Teller (PT) potentials is investigated in the context of the Weyl-Wigner quantum mechanics. The obtained Wigner functions for quantum superpositions of ground and first-excited states exhib
Thermal states are the bedrock of statistical physics. Nevertheless, when and how they actually arise in closed quantum systems is not fully understood. We consider this question for systems with local Hamiltonians on finite quantum lattices. In a fi
In this work, a classical-quantum correspondence for two-level pseudo-Hermitian systems is proposed and analyzed. We show that the presence of a complex external field can be described by a pseudo-Hermitian Hamiltonian if there is a suitable canonica
We investigate the equilibration and thermalization properties of quantum systems interacting with a finite dimensional environment. By exploiting the concept of time averaged states, we introduce a completely positive map which allows to describe in