ترغب بنشر مسار تعليمي؟ اضغط هنا

Inverse engineering rigorous adiabatic Hamiltonian for non-Hermitian system

62   0   0.0 ( 0 )
 نشر من قبل Yehong Chen Dr.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We generalize the quantum adiabatic theorem to the non-Hermitian system and build a rigorous adiabaticity condition with respect to the adiabatic phase. The non-Hermitian Hamiltonian inverse engineering method is proposed for the purpose to adiabatically drive a artificial quantum state. For the sake of clearness, we take a concrete two-level system as an example to show the usefulness of the inverse engineering method. The numerical simulation result shows that our scheme can work well even under noise if the parameters are chosen appropriately. We can obtain the desired target state by adjusting extra rotating magnetic fields at a predefined time. Furthermore, certain noise and dissipation in the systems is no longer undesirable, but plays a positive role in our scheme. Therefore, our scheme could provide more choices for the realization of quantum-state engineering.



قيم البحث

اقرأ أيضاً

Floquet engineering, modulating quantum systems in a time periodic way, lies at the central part for realizing novel topological dynamical states. Thanks to the Floquet engineering, various new realms on experimentally simulating topological material s have emerged. Conventional Floquet engineering, however, only applies to time periodic non-dissipative Hermitian systems, and for the quantum systems in reality, non-Hermitian process with dissipation usually occurs. So far, it remains unclear how to characterize topological phases of periodically driven non-Hermitian systems via the frequency space Floquet Hamiltonian. Here, we propose the non-Floquet theory to identify different Floquet topological phases of time periodic non-Hermitian systems via the generation of Floquet band gaps in frequency space. In non-Floquet theory, the eigenstates of non-Hermitian Floquet Hamiltonian are temporally deformed to be of Wannier-Stark localization. Remarkably, we show that different choices of starting points of driving period can result to different localization behavior, which effect can reversely be utilized to design detectors of quantum phases in dissipative oscillating fields. Our protocols establish a fundamental rule for describing topological features in non-Hermitian dynamical systems and can find its applications to construct new types of Floquet topological materials.
We show that the definition of instantaneous eigenstate populations for a dynamical non-self-adjoint system is not obvious. The naive direct extension of the definition used for the self-adjoint case leads to inconsistencies; the resulting artifacts can induce a false inversion of population or a false adiabaticity. We show that the inconsistency can be avoided by introducing geometric phases in another possible definition of populations. An example is given which demonstrates both the anomalous effects and their removal by our approach.
A new class of non-Hermitian Hamiltonians with real spectrum, which are written as a real linear combination of su(2) generators in the form $ H=omega J_{3}+alpha J_{-}+beta J_{+}$, $alpha eq beta$, is analyzed. The metrics which allows the transiti on to the equivalent Hermitian Hamiltonian is established. A pseudo-Hermitian supersymmetic extension of such Hamiltonians is performed. They correspond to the pseudo-Hermitian supersymmetric systems of the boson-phermion oscillators. We extend the supercoherent states formalism to such supersymmetic systems via the pseudo-unitary supersymmetric displacement operator method. The constructed family of these supercoherent states consists of two dual subfamilies that form a bi-overcomplete and bi-normal system in the boson-phermion Fock space. The states of each subfamily are eigenvectors of the boson annihilation operator and of one of the two phermion lowering operators.
In the traditional quantum theory, one-dimensional quantum spin models possess a factorization surface where the ground states are fully separable having vanishing bipartite as well as multipartite entanglement. We report that in the non-Hermitian co unterpart of these models, these factorization surfaces either can predict the exceptional points where the unbroken to the broken transition occurs or can guarantee the reality of the spectrum, thereby proposing a procedure to reveal the unbroken phase. We first analytically demonstrate it for the nearest-neighbor rotation-time RT-symmetric XY model with uniform and alternating transverse magnetic fields, referred to as the iATXY model. Exact diagonalization techniques are then employed to establish this fact for the RT-symmetric XYZ model with short- and long-range interactions as well as for the variable-ranged iATXY model. Moreover, we show that although the factorization surface prescribes the unbroken phase of the non-Hermitian model, the bipartite nearest-neighbor entanglement at the exceptional point is nonvanishing.
Engineering desired Hamiltonian in quantum many-body systems is essential for applications such as quantum simulation, computation and sensing. Conventional quantum Hamiltonian engineering sequences are designed using human intuition based on perturb ation theory, which may not describe the optimal solution and is unable to accommodate complex experimental imperfections. Here we numerically search for Hamiltonian engineering sequences using deep reinforcement learning (DRL) techniques and experimentally demonstrate that they outperform celebrated sequences on a solid-state nuclear magnetic resonance quantum simulator. As an example, we aim at decoupling strongly-interacting spin-1/2 systems. We train DRL agents in the presence of different experimental imperfections and verify robustness of the output sequences both in simulations and experiments. Surprisingly, many of the learned sequences exhibit a common pattern that had not been discovered before, to our knowledge, but has an meaningful analytical description. We can thus restrict the searching space based on this control pattern, allowing to search for longer sequences, ultimately leading to sequences that are robust against dominant imperfections in our experiments. Our results not only demonstrate a general method for quantum Hamiltonian engineering, but also highlight the importance of combining black-box artificial intelligence with understanding of physical system in order to realize experimentally feasible applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا