ﻻ يوجد ملخص باللغة العربية
Systematic validation is an essential part of algorithm development. The enormous dataset sizes and the complexity observed in many recent time-resolved 3D fluorescence microscopy imaging experiments, however, prohibit a comprehensive manual ground truth generation. Moreover, existing simulated benchmarks in this field are often too simple or too specialized to sufficiently validate the observed image analysis problems. We present a new semi-synthetic approach to generate realistic 3D+t benchmarks that combines challenging cellular movement dynamics of real embryos with simulated fluorescent nuclei and artificial image distortions including various parametrizable options like cell numbers, acquisition deficiencies or multiview simulations. We successfully applied the approach to simulate the development of a zebrafish embryo with thousands of cells over 14 hours of its early existence.
Contemporary realistic mathematical models of single-cell cardiac electrical excitation are immensely detailed. Model complexity leads to parameter uncertainty, high computational cost and barriers to mechanistic understanding. There is a need for re
Adherent cells exert traction forces on to their environment, which allows them to migrate, to maintain tissue integrity, and to form complex multicellular structures. This traction can be measured in a perturbation-free manner with traction force mi
Cochlear implants (CIs) are a standard treatment for patients who experience severe to profound hearing loss. Recent studies have shown that hearing outcome is correlated with intra-cochlear anatomy and electrode placement. Our group has developed im
The cell cytoskeleton is a striking example of active medium driven out-of-equilibrium by ATP hydrolysis. Such activity has been shown recently to have a spectacular impact on the mechanical and rheological properties of the cellular medium, as well
Stem cells can precisely and robustly undergo cellular differentiation and lineage commitment, referred to as stemness. However, how the gene network underlying stemness regulation reliably specifies cell fates is not well understood. To address this