ﻻ يوجد ملخص باللغة العربية
Traditional optical interference narrow-band-stop filters do not possess wide-angle property, because peaks and troughs of filter spectrum would be moved at a non-normal angle of incidence (AOI), which could result in functional failure in particular cases, e.g. blocking of laser for pilot in cockpit during premeditated laser pointer direct. For this reason, we designed a wide-angle metamaterial narrow-band-stop filter assembled by cross shaped units to block 532 nm green light, which is firstly reported in the world. Unnecessary shift of spectrum caused by AOI change is effectively inhibited, and angular tolerance of wide-angle capability achieves to 35 degrees non-normal AOIs.
We have developed a Watt-level random laser at 532 nm. The laser is based on a 1064 nm random distributed ytterbium-gain assisted fiber laser seed with a 0.35 nm line-width 900mW polarized output power. A study for the optimal length of the random di
Optically resonant dielectric metasurfaces offer unique capability to fully control the wavefront, polarisation, intensity or spectral content of light based on the excitation and interference of different electric and magnetic Mie multipolar resonan
Recently, an achromatic metasurface was successfully demonstrated to deflect light of multiple wavelengths in the same direction and it was further applied to the design of planar lenses without chromatic aberrations [Science, 347, 1342(2015)]. Howev
Currently, no light source exists which is both narrow-band and speckle-free with sufficient brightness for full-field imaging applications. Light emitting diodes (LEDs) are excellent spatially incoherent sources, but are tens of nanometers broad. La
We present the design, fabrication, and characterization of a metamaterial absorber which is resonant at terahertz frequencies. We experimentally demonstrate an absorptivity of 0.97 at 1.6 terahertz. Importantly, this free-standing absorber is only 1