ترغب بنشر مسار تعليمي؟ اضغط هنا

Statistical Test of Distance--Duality Relation with Type Ia Supernovae and Baryon Acoustic Oscillations

70   0   0.0 ( 0 )
 نشر من قبل Cong Ma
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Cong Ma




اسأل ChatGPT حول البحث

We test the distance--duality relation $eta equiv d_L / [ (1 + z)^2 d_A ] = 1$ between cosmological luminosity distance ($d_L$) from the JLA SNe Ia compilation (arXiv:1401.4064) and angular-diameter distance ($d_A$) based on Baryon Oscillation Spectroscopic Survey (BOSS; arXiv:1607.03155) and WiggleZ baryon acoustic oscillation measurements (arXiv:1105.2862, arXiv:1204.3674). The $d_L$ measurements are matched to $d_A$ redshift by a statistically consistent compression procedure. With Monte Carlo methods, nontrivial and correlated distributions of $eta$ can be explored in a straightforward manner without resorting to a particular evolution template $eta(z)$. Assuming independent constraints on cosmological parameters that are necessary to obtain $d_L$ and $d_A$ values, we find 9% constraints consistent with $eta = 1$ from the analysis of SNIa + BOSS and an 18% bound results from SNIa + WiggleZ. These results are contrary to previous claims that $eta < 1$ has been found close to or above the $1 sigma$ level. We discuss the effect of different cosmological parameter inputs and the use of the apparent deviation from distance--duality as a proxy of systematic effects on cosmic distance measurements. The results suggest possible systematic overestimation of SNIa luminosity distances compared with $d_A$ data when a Planck {Lambda}CDM cosmological parameter inference (arXiv:1502.01589) is used to enhance the precision. If interpreted as an extinction correction due to a gray dust component, the effect is broadly consistent with independent observational constraints.



قيم البحث

اقرأ أيضاً

111 - Kamal Bora , Shantanu Desai 2021
We carry out a test of the cosmic distance duality relation using a sample of 52 SPT-SZ clusters, along with X-ray measurements from XMM-Newton. To carry out this test, we need an estimate of the luminosity distance ($D_L$) at the redshift of the clu ster. For this purpose, we use three independent methods: directly using $D_L$ from the closest Type Ia Supernovae from the Union 2.1 sample, non-parametric reconstruction of $D_L$ using the same Union 2.1 sample, and finally using $H(z)$ measurements from cosmic chronometers and reconstructing $D_L$ using Gaussian Process regression. We use four different functions to characterize the deviations from CDDR. All our results for these ($4 times 3$) analyses are consistent with CDDR to within 1$sigma$.
We analyse the largest spectroscopic samples of galaxy clusters to date, and provide observational constraints on the distance-redshift relation from baryon acoustic oscillations. The cluster samples considered in this work have been extracted from t he Sloan Digital Sky Survey at three median redshifts, $z=0.2$, $z=0.3$, and $z=0.5$. The number of objects is $12910$, $42215$, and $11816$, respectively. We detect the peak of baryon acoustic oscillations for all the three samples. The derived distance constraints are: $r_s/D_V(z=0.2)=0.18 pm 0.01$, $r_s/D_V(z=0.3)=0.124 pm 0.004$ and $r_s/D_V(z=0.5)=0.080 pm 0.002$. Combining these measurements, we obtain robust constraints on cosmological parameters. Our results are in agreement with the standard $Lambda$ cold dark matter model. Specifically, we constrain the Hubble constant in a $Lambda$CDM model, $H_0 = 64_{-9}^{+14} , mathrm{km} , mathrm{s}^{-1}mathrm{Mpc}^{-1}$, the density of curvature energy, in the $oLambda$CDM context, $Omega_K = -0.015_{-0.36}^{+0.34}$, and finally the parameter of the dark energy equation of state in the $ow$CDM case, $w = -1.01_{-0.44}^{+0.44}$. This is the first time the distance-redshift relation has been constrained using only the peak of baryon acoustic oscillations of galaxy clusters.
There is a persistent $H_0$-tension, now at more than $gtrsim 4sigma$ level, between the local distance ladder value and the emph{Planck} cosmic microwave background measurement, in the context of flat $Lambda$CDM model. We reconstruct $H(z)$ in a co smological-model-independent way using three low-redshift distance probes including the latest data from baryon acoustic oscillation, Type Ia supernova and four gravitational lensing Time-Delay observations. We adopt general parametric models of $H(z)$ and assume a Gaussian prior on the sound horizon at drag epoch, $r_{mathrm s}$, from emph{Planck} measurement. The reconstructed $H_0$ using Pantheon SN Ia and BAO data are consistent with the emph{Planck} flat $Lambda$CDM value. When including the GLTD data, $H_0$ increases mildly, yet remaining discrepant with the local measurement at $sim 2.5sigma$ level. Our reconstructions being blind to the dark sectors at low redshift, we reaffirm the earlier claims that the Hubble tension is not likely to be solved by modifying the energy budget of the low-redshift universe. We further forecast the constraining ability of future realistic mock BAO data from DESI and GLTD data from LSST, combining which, we anticipate that the uncertainty of the inferred $H_0$ would be improved by $sim 38%$, reaching $sigma_{H_0} approx 0.56$ uncertainty level.
We present measurements of the baryon acoustic peak at redshifts z = 0.44, 0.6 and 0.73 in the galaxy correlation function of the final dataset of the WiggleZ Dark Energy Survey. We combine our correlation function with lower-redshift measurements fr om the 6-degree Field Galaxy Survey and Sloan Digital Sky Survey, producing a stacked survey correlation function in which the statistical significance of the detection of the baryon acoustic peak is 4.9-sigma relative to a zero-baryon model with no peak. We fit cosmological models to this combined baryon acoustic oscillation (BAO) dataset comprising six distance-redshift data points, and compare the results to similar fits to the latest compilation of supernovae (SNe) and Cosmic Microwave Background (CMB) data. The BAO and SNe datasets produce consistent measurements of the equation-of-state w of dark energy, when separately combined with the CMB, providing a powerful check for systematic errors in either of these distance probes. Combining all datasets we determine w = -1.03 +/- 0.08 for a flat Universe, consistent with a cosmological constant model. Assuming dark energy is a cosmological constant and varying the spatial curvature, we find Omega_k = -0.004 +/- 0.006.
In this paper, we propose a new test to the cosmic distance duality relation (CDDR), $D_L=D_A(1+z)^2$, where $D_L$ and $D_A$ are the luminosity and angular diameter distances, respectively. The data used correspond to 61 Type Ia Supernova luminosity distances and $Y_{SZE}-Y_X$ measurements of 61 galaxy clusters obtained by the {it Planck} mission and the deep XMM-Newton X-ray data, where $Y_{SZE}$ is the integrated comptonization parameter obtained via Sunyaev-Zeldovich effect observations and $Y_X$ is the X-ray counterpart. More precisely, we use the $Y_{SZE}D_{A}^{2}/C_{XSZE}Y_X$ scaling-relation and a deformed CDDR, such as $D_L/D_A(1+z)^2=eta(z)$, to verify if $eta(z)$ is compatible with the unity. Two $eta(z)$ functions are used, namely, $eta(z)=1+eta_0 z$ and $eta(z)=1+eta_0 z /(1+z)$. { We obtain that the CDDR validity ($eta_0=0$) is verified within $approx 1.5sigma$ c.l. for both $eta(z)$ functions.}.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا