ﻻ يوجد ملخص باللغة العربية
In this paper, we present a Clenshaw-Curtis-Filon-type method for the weakly singular oscillatory integral with Fourier and Hankel kernels. By interpolating the non-oscillatory and nonsingular part of the integrand at $(N+1)$ Clenshaw-Curtis points, the method can be implemented in $O(Nlog N)$ operations. The method requires the accurate computation of modified moments. We first give a method for the derivation of the recurrence relation for the modified moments, which can be applied to the derivation of the recurrence relation for the modified moments corresponding to other type oscillatory integrals. By using recurrence relation, special functions and classic quadrature methods, the modified moments can be computed accurately and efficiently. Then, we present the corresponding error bound in inverse powers of frequencies $k$ and $omega$ for the proposed method. Numerical examples are provided to support the theoretical results and show the efficiency and accuracy of the method.
Weakly singular Volterra integral equations of the different types are considered. The construction of accuracy-optimal numerical methods for one-dimensional and multidimensional equations is discussed. Since this question is closely related with the
In this article, we present an $O(N log N)$ rapidly convergent algorithm for the numerical approximation of the convolution integral with radially symmetric weakly singular kernels and compactly supported densities. To achieve the reduced computation
Computationally efficient numerical methods for high-order approximations of convolution integrals involving weakly singular kernels find many practical applications including those in the development of fast quadrature methods for numerical solution
In this paper we propose and analyze a fractional Jacobi-collocation spectral method for the second kind Volterra integral equations (VIEs) with weakly singular kernel $(x-s)^{-mu},0<mu<1$. First we develop a family of fractional Jacobi polynomials,
A high-order accurate quadrature rule for the discretization of boundary integral equations (BIEs) on closed smooth contours in the plane is introduced. This quadrature can be viewed as a hybrid of the spectral quadrature of Kress (1991) and the loca