ترغب بنشر مسار تعليمي؟ اضغط هنا

Brown Dwarfs in Young Moving Groups from Pan-STARRS1. I. AB Doradus

83   0   0.0 ( 0 )
 نشر من قبل Kimberly Aller
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Substellar members of young ($lesssim$150 Myr) moving groups are valuable benchmarks to empirically define brown dwarf evolution with age and to study the low-mass end of the initial mass function. We have combined Pan-STARRS1 (PS1) proper motions with optical$-$IR photometry from PS1, 2MASS and $textit{WISE}$ to search for substellar members of the AB Dor Moving Group within $approx$50 pc and with spectral types of late-M to early-L, corresponding to masses down to $approx$30 M$_{Jup}$ at the age of the group ($approx$125 Myr). Including both photometry and proper motions allows us to better select candidates by excluding field dwarfs whose colors are similar to young AB~Dor Moving Group members. Our near-IR spectroscopy has identified six ultracool dwarfs (M6$-$L4; $approx$30$-$100 M$_{Jup}$) with intermediate surface gravities (INT-G) as candidate members of the AB Dor Moving Group. We find another two candidate members with spectra showing hints of youth but consistent with field gravities. We also find four field brown dwarfs unassociated with the AB Dor Moving Group, three of which have INT-G gravity classification. While signatures of youth are present in the spectra of our $approx$125 Myr objects, neither their $J-K$ nor $W1-W2$ colors are significantly redder than field dwarfs with the same spectral types, unlike younger ultracool dwarfs. We also determined PS1 parallaxes for eight of our candidates and one previously identified AB Dor Moving Group candidate. Although radial velocities (and parallaxes, for some) are still needed to fully assess membership, these new objects provide valuable insight into the spectral characteristics and evolution of young brown dwarfs.



قيم البحث

اقرأ أيضاً

Context. Precise determination of stellar masses is necessary to test the validity of pre-main-sequence (PMS) stellar evolutionary models, whose predictions are in disagreement with measurements for masses below 1.2 Msun. To improve such a test, and based on our previous studies, we selected the AB Doradus moving group (AB Dor-MG) as the best-suited association on which to apply radio-based high-precision astrometric techniques to study binary systems. Aims. We seek to determine precise estimates of the masses of a set of stars belonging to the AB Dor-MG using radio and infrared observations. Methods. We observed in phase-reference mode with the Very Large Array (VLA) at 5 GHz and with the European VLBI Network (EVN) at 8.4 GHz the stars HD 160934, EK Dra, PW And, and LO Peg. We also observed some of these stars with the near-infrared CCD AstraLux camera at the Calar Alto observatory to complement the radio observations. Results. We determine model-independent dynamical masses of both components of the star HD 160934, A and c, which are 0.70+/-0.07 Msun and 0.45+/-0.04 Msun , respectively. We revised the orbital parameters of EK Dra and we determine a sum of the masses of the system of 1.38+/-0.08 Msun. We also explored the binarity of the stars LO Peg and PW And. Conclusions. We found observational evidence that PMS evolutionary models underpredict the mass of PMS stars by 10%-40%, as previously reported by other authors. We also inferred that the origin of the radio emission must be similar in all observed stars, that is, extreme magnetic activity of the stellar corona that triggers gyrosynchrotron emission from non-thermal, accelerated electrons.
We are conducting a proper-motion survey for young brown dwarfs in the Taurus-Auriga molecular cloud based on the Pan-STARRS1 3$pi$ Survey. Our search uses multi-band photometry and astrometry to select candidates, and is wider (370 deg$^{2}$) and de eper (down to $approx$3 M$_{rm Jup}$) than previous searches. We present here our search methods and spectroscopic follow-up of our high-priority candidates. Since extinction complicates spectral classification, we have developed a new approach using low-resolution ($R approx 100$) near-infrared spectra to quantify reddening-free spectral types, extinctions, and gravity classifications for mid-M to late-L ultracool dwarfs ($approx 100-3$ M$_{rm Jup}$ in Taurus). We have discovered 25 low-gravity (VL-G) and the first 11 intermediate-gravity (INT-G) substellar (M6-L1) members of Taurus, constituting the largest single increase of Taurus brown dwarfs to date. We have also discovered 1 new Pleiades member and 13 new members of the Perseus OB2 association, including a candidate very wide separation (58 kAU) binary. We homogeneously reclassify the spectral types and extinctions of all previously known Taurus brown dwarfs. Altogether our discoveries have thus far increased the substellar census in Taurus by $approx 40%$ and added three more L-type members ($approx 5-10$ M$_{rm Jup}$). Most notably, our discoveries reveal an older ($>$10 Myr) low-mass population in Taurus, in accord with recent studies of the higher-mass stellar members. The mass function appears to differ between the younger and older Taurus populations, possibly due to incompleteness of the older stellar members or different star formation processes.
We image 104 newly identified low-mass (mostly M-dwarf) pre-main sequence members of nearby young moving groups with Magellan Adaptive Optics (MagAO) and identify 27 binaries with instantaneous projected separation as small as 40 mas. 15 were previou sly unknown. The total number of multiple systems in this sample including spectroscopic and visual binaries from the literature is 36, giving a raw multiplicity rate of at least $35^{+5}_{-4}%$ for this population. In the separation range of roughly 1 - 300 AU in which infrared AO imaging is most sensitive, the raw multiplicity rate is at least $24^{+5}_{-4}%$ for binaries resolved by the MagAO infrared camera (Clio). The M-star sub-sample of 87 stars yields a raw multiplicity of at least $30^{+5}_{-4}%$ over all separations, $21^{+5}_{-4}%$ for secondary companions resolved by Clio from 1 to 300 AU ($23^{+5}_{-4}%$ for all known binaries in this separation range). A combined analysis with binaries discovered by the Search for Associations Containing Young stars shows that multiplicity fraction as a function of mass and age over the range of 0.2 to 1.2 $M_odot$ and 10 - 200 Myr appears to be linearly flat in both parameters and across YMGs. This suggests that multiplicity rates are largely set by 100 Myr without appreciable evolution thereafter. After bias corrections are applied, the multiplicity fraction of low-mass YMG members ($< 0.6 M_odot$) is in excess of the field.
512 - E.T. Whelan 2014
The protostellar outflow mechanism operates for a significant fraction of the pre-main sequence phase of a solar mass star and is thought to have a key role in star and perhaps even planet formation. This energetic mechanism manifests itself in sever al different forms and on many scales. Thus outflow activity can be probed in numerous different regimes from radio to X-ray wavelengths. Recent discoveries have shown that it is not only solar mass stars that launch outflows during their formation but also the sub-stellar brown dwarfs. In this article what is currently known about jets from young stars is summarised, including an outline of why it is important to study jets. The second part of this article is dedicated to jets from young brown dwarfs. While only a small number of brown dwarf outflows have been investigated to date, interesting properties have been observed. Here observations of brown dwarf outflows are described and what is currently known of their properties compared to low mass protostellar outflows.
We present new radial velocity (RV) measurements for 11 candidate young very-low-mass stars and brown dwarfs, with spectral types from M7 to L7. Candidate young objects were identified by features indicative of low surface gravity in their optical an d/or near-infrared spectra. RV measurements are derived from high resolution (R=$lambda$/$Deltalambda$=20,000) $J$ band spectra taken with NIRSPEC at the Keck Observatory. We combine RVs with proper motions and trigonometric distances to calculate three-dimensional space positions and motions and to evaluate membership probabilities for nearby young moving groups (NYMGs). We propose 2MASS J00452143+1634446 (L2$beta$, $J$=13.06) as an RV standard given the precision and stability of measurements from three different studies. We test the precision and accuracy of our RV measurements as a function of spectral type of the comparison object, finding that RV results are essentially indistinguishable even with differences of $pm$5 spectral subtypes. We also investigate the strengths of gravity-sensitive K~{sc i} lines at 1.24--1.25 $mu$m and evaluate their consistency with other age indicators. We confirm or re-confirm four brown dwarf members of NYMGs -- 2MASS J00452143+1634446, WISE J00470038+6803543, 2MASS J01174748$-$3403258, and 2MASS J19355595$-$2846343 -- and their previous age estimates. We identify one new brown dwarf member of the Carina-Near moving group, 2MASS J21543454$-$1055308. The remaining objects do not appear to be members of any known NYMGs, despite their spectral signatures of youth. These results add to the growing number of very-low-mass objects exhibiting signatures of youth that lack likely membership in a known NYMG, thereby compounding the mystery regarding local, low-density star formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا