ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymmetry-induced resistive switching in Ag-Ag$_{2}$S-Ag memristors enabling a simplified atomic-scale memory design

232   0   0.0 ( 0 )
 نشر من قبل Mikl\\'os Csontos Dr.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Prevailing models of resistive switching arising from electrochemical formation of conducting filaments across solid state ionic conductors commonly attribute the observed polarity of the voltage-biased switching to the sequence of the active and inert electrodes confining the resistive switching memory cell. Here we demonstrate equivalent, stable switching behavior in metallic Ag-Ag$_{2}$S-Ag nanojunctions at room temperature. Our experimental results and numerical simulations reveal that the polarity of the switchings is solely determined by the geometrical asymmetry of the electrode surfaces. By the lithographical design of a proof of principle device we demonstrate the merits of simplified fabrication of atomic-scale, robust planar Ag$_{2}$S memory cells.



قيم البحث

اقرأ أيضاً

The nonlinear transport properties of nanometer-scale junctions formed between an inert metallic tip and an Ag film covered by a thin Ag$_{2}$S layer are investigated. Suitably prepared samples exhibit memristive behavior with technologically optimal ON and OFF state resistances yielding to resistive switching on the nanosecond time scale. Utilizing point contact Andreev reflection spectroscopy we studied the nature of electron transport in the active volume of the memristive junctions showing that both the ON and OFF states correspond to truly nanometer scale, highly transparent metallic channels. Our results demonstrate the merits of Ag$_{2}$S nanojunctions as nanometer-scale memory cells with GHz operation frequencies.
Transitions to immeasurably small electrical resistance in thin films of Ag/Au nanostructure-based films have generated significant interest because such transitions can occur even at ambient temperature and pressure. While the zero-bias resistance a nd magnetic transition in these films have been reported recently, the non-equilibrium current-voltage ($I-V$) transport characteristics at the transition remains unexplored. Here we report the $I-V$ characteristics at zero magnetic field of a prototypical Ag/Au nanocluster film close to its resistivity transition at the critical temperature $T_{C}$ of $approx160$ K. The $I-V$ characteristics become strongly hysteretic close to the transition and exhibit a temperature-dependent critical current scale beyond which the resistance increases rapidly. Intriguingly, the non-equilibrium transport regime consists of a series of nearly equispaced resistance steps when the drive current exceeds the critical current. We have discussed the similarity of these observations with resistive transitions in ultra-thin superconducting wires via phase slip centres.
The inverse Rashba-Edelstein effect (IREE) is a spin conversion mechanism that recently attracts attention in spintronics and condensed matter physics. In this letter, we report an investigation of the IREE in Bi/Ag by using ferrimagnetic insulator y ttrium iron garnet (YIG). We prepared two types of samples with opposite directions of the Rashba field by changing a stacking order of Bi and Ag. An electric current generated by the IREE was observed from both stacks, and an efficiency of spin conversion -characterized by the IREE length- was estimated by taking into account a number of contributions left out in previous studies. This study provides a further insight into the IREE spin conversion mechanism: important step towards achieving efficient spin-charge conversion devices.
107 - J. Sugiyama , Y. Ikedo , K. Mukai 2006
The nature of the magnetic transition of the half-filled triangular antiferromagnet Ag$_{2}$NiO$_2$ with $T_{rm N}$=56K was studied with positive muon-spin-rotation and relaxation ($mu^+$SR) spectroscopy. Zero field $mu^+$SR measurements indicate the existence of a static internal magnetic field at temperatures below $T_{rm N}$. Two components with slightly different precession frequencies and wide internal-field distributions suggest the formation of an incommensurate antiferromagnetic order below 56 K. This implies that the antifrerromagnetic interaction is predominant in the NiO$_2$ plane in contrast to the case of the related compound NaNiO$_2$. An additional transition was found at $sim$22 K by both $mu^+$SR and susceptibility measurements. It was also clarified that the transition at $sim$260 K observed in the susceptibility of Ag$_{2}$NiO$_{2}$ is induced by a purely structural transition.
Organometallic nanostructures are promising candidates for applications in optoelectronics, magnetism and catalysis. Our bottom-up approach employs a cyano-functionalized terminal alkyne species (CN-DETP) on the Ag(110) surface to fabricate 2D domain s of regularly stacked Ag-acetylide nanowires. We unravel their adsorption properties and give evidence to their organometallic character with the aid of complementary surface-sensitive techniques, i.e. scanning tunneling microscopy, X-ray photoelectron spectroscopy and near-edge X-ray absorption fine-structure spectroscopy. Guided by the anisotropic (110) surface, highly oriented nanowires form in two enantiomorphic domains of regularly stacked trans isomers, whereby the bifunctional design of CN-DETP gives rise to orthogonal bonding motifs. Based on STM imaging, we find high thermal stability of the Ag-bis-acetylide wires, without conversion into graphdiyne chains. Our approach based on orthogonal bifunctionalization and selective functional group recognition extends the toolbox of creating alkyne-based nanostructures at interfaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا