ﻻ يوجد ملخص باللغة العربية
Prevailing models of resistive switching arising from electrochemical formation of conducting filaments across solid state ionic conductors commonly attribute the observed polarity of the voltage-biased switching to the sequence of the active and inert electrodes confining the resistive switching memory cell. Here we demonstrate equivalent, stable switching behavior in metallic Ag-Ag$_{2}$S-Ag nanojunctions at room temperature. Our experimental results and numerical simulations reveal that the polarity of the switchings is solely determined by the geometrical asymmetry of the electrode surfaces. By the lithographical design of a proof of principle device we demonstrate the merits of simplified fabrication of atomic-scale, robust planar Ag$_{2}$S memory cells.
The nonlinear transport properties of nanometer-scale junctions formed between an inert metallic tip and an Ag film covered by a thin Ag$_{2}$S layer are investigated. Suitably prepared samples exhibit memristive behavior with technologically optimal
Transitions to immeasurably small electrical resistance in thin films of Ag/Au nanostructure-based films have generated significant interest because such transitions can occur even at ambient temperature and pressure. While the zero-bias resistance a
The inverse Rashba-Edelstein effect (IREE) is a spin conversion mechanism that recently attracts attention in spintronics and condensed matter physics. In this letter, we report an investigation of the IREE in Bi/Ag by using ferrimagnetic insulator y
The nature of the magnetic transition of the half-filled triangular antiferromagnet Ag$_{2}$NiO$_2$ with $T_{rm N}$=56K was studied with positive muon-spin-rotation and relaxation ($mu^+$SR) spectroscopy. Zero field $mu^+$SR measurements indicate the
Organometallic nanostructures are promising candidates for applications in optoelectronics, magnetism and catalysis. Our bottom-up approach employs a cyano-functionalized terminal alkyne species (CN-DETP) on the Ag(110) surface to fabricate 2D domain