ترغب بنشر مسار تعليمي؟ اضغط هنا

Scaling limit of the odometer in divisible sandpiles

68   0   0.0 ( 0 )
 نشر من قبل Alessandra Cipriani
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In a recent work Levine et al. (2015) prove that the odometer function of a divisible sandpile model on a finite graph can be expressed as a shifted discrete bilaplacian Gaussian field. For the discrete torus, they suggest the possibility that the scaling limit of the odometer may be related to the continuum bilaplacian field. In this work we show that in any dimension the rescaled odometer converges to the continuum bilaplacian field on the unit torus.



قيم البحث

اقرأ أيضاً

In this paper we complete the investigation of scaling limits of the odometer in divisible sandpiles on $d$-dimensional tori generalising the works Chiarini et al. (2018), Cipriani et al. (2017, 2018). Relaxing the assumption of independence of the w eights of the divisible sandpile, we generate generalised Gaussian fields in the limit by specifying the Fourier multiplier of their covariance kernel. In particular, using a Fourier multiplier approach, we can recover fractional Gaussian fields of the form $(-Delta)^{-(1+s)} W$ for $s>0$ and $W$ a spatial white noise on the $d$-dimensional unit torus.
We study Abelian sandpiles on graphs of the form $G times I$, where $G$ is an arbitrary finite connected graph, and $I subset Z$ is a finite interval. We show that for any fixed $G$ with at least two vertices, the stationary measures $mu_I = mu_{G ti mes I}$ have two extremal weak limit points as $I uparrow Z$. The extremal limits are the only ergodic measures of maximum entropy on the set of infinite recurrent configurations. We show that under any of the limiting measures, one can add finitely many grains in such a way that almost surely all sites topple infinitely often. We also show that the extremal limiting measures admit a Markovian coding.
90 - Wioletta M. Ruszel 2019
The divisible sandpile model is a fixed-energy continuous counterpart of the Abelian sandpile model. We start with a random initial configuration and redistribute mass deterministically. Under certain conditions the sandpile will stabilize. The assoc iated odometer function describes the amount of mass emitted from each vertex during stabilization. In this survey we describe recent scaling limit results of the odometer function depending on different initial configurations and redistribution rules. Moreover we review connections to the obstacle problem from potential theory, including the connection between odometers and limiting shapes of growth models such as iDLA. Finally we state some open problems.
In cite{Cipriani2016}, the authors proved that, with the appropriate rescaling, the odometer of the (nearest neighbours) divisible sandpile on the unit torus converges to a bi-Laplacian field. Here, we study $alpha$-long-range divisible sandpiles, si milar to those introduced in cite{Frometa2018}. We show that, for $alpha in (0,2)$, the limiting field is a fractional Gaussian field on the torus with parameter $alpha/2$. However, for $alpha in [2,infty)$, we recover the bi-Laplacian field. This provides an alternative construction of fractional Gaussian fields such as the Gaussian Free Field or membrane model using a diffusion based on the generator of Levy walks. The central tool for obtaining our results is a careful study of the spectrum of the fractional Laplacian on the discrete torus. More specifically, we need the rate of divergence of the eigenvalues as we let the side length of the discrete torus go to infinity. As a side result, we obtain precise asymptotics for the eigenvalues of discrete fractional Laplacians. Furthermore, we determine the order of the expected maximum of the discrete fractional Gaussian field with parameter $gamma=min {alpha,2}$ and $alpha in mathbb{R}_+backslash{2}$ on a finite grid.
Let $S$ be the random walk obtained from coin turning with some sequence ${p_n}_{nge 1}$, as introduced in [6]. In this paper we investigate the scaling limits of $S$ in the spirit of the classical Donsker invariance principle, both for the heating a nd for the cooling dynamics. We prove that an invariance principle, albeit with a non-classical scaling, holds for not too small sequences, the order const$cdot n^{-1}$ (critical cooling regime) being the threshold. At and below this critical order, the scaling behavior is dramatically different from the one above it. The same order is also the critical one for the Weak Law of Large Numbers to hold. In the critical cooling regime, an interesting process emerges: it is a continuous, piecewise linear, recurrent process, for which the one-dimensional marginals are Beta-distributed. We also investigate the recurrence of the walk and its scaling limit, as well as the ergodicity and mixing of the $n$th step of the walk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا