ترغب بنشر مسار تعليمي؟ اضغط هنا

Pseudo Markovian Viscosity Solutions of Fully Nonlinear Degenerate PPDEs

64   0   0.0 ( 0 )
 نشر من قبل Ibrahim Ekren
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we propose a new type of viscosity solutions for fully nonlinear path dependent PDEs. By restricting to certain pseudo Markovian structure, we remove the uniform non- degeneracy condition imposed in our earlier works [9, 10]. We establish the comparison principle under natural and mild conditions. Moreover, as applications we apply our results to two important classes of PPDEs: the stochastic HJB equations and the path dependent Isaacs equations, induced from the stochastic optimization with random coefficients and the path dependent zero sum game problem, respectively.



قيم البحث

اقرأ أيضاً

106 - Zhenjie Ren 2014
This paper introduces a convenient solution space for the uniformly elliptic fully nonlinear path dependent PDEs. It provides a wellposedness result under standard Lipschitz-type assumptions on the nonlinearity and an additional assumption formulated on some partial differential equation defined locally by freezing the path.
We propose a definition of viscosity solutions to fully nonlinear PDEs driven by a rough path via appropriate notions of test functions and rough jets. These objects will be defined as controlled processes with respect to the driving rough path. We s how that this notion is compatible with the seminal results of Lions and Souganidis and with the recent results of Friz and coauthors on fully non-linear SPDEs with rough drivers.
110 - Ibrahim Ekren 2013
In this article, we adapt the definition of viscosity solutions to the obstacle problem for fully nonlinear path-dependent PDEs with data uniformly continuous in $(t,omega)$, and generator Lipschitz continuous in $(y,z,gamma)$. We prove that our defi nition of viscosity solutions is consistent with the classical solutions, and satisfy a stability result. We show that the value functional defined via the second order reflected backward stochastic differential equation is the unique viscosity solution of the variational inequalities.
We study a nonlinear equation with an elliptic operator having degenerate coercivity. We prove the existence of a unique W^{1,1}_0 distributional solution under suitable summability assumptions on the source in Lebesgue spaces. Moreover, we prove tha t our problem has no solution if the source is a Radon measure concentrated on a set of zero harmonic capacity.
128 - Guy Barles 2008
We study a hybrid control system in which both discrete and continuous controls are involved. The discrete controls act on the system at a given set interface. The state of the system is changed discontinuously when the trajectory hits predefined set s, namely, an autonomous jump set $A$ or a controlled jump set $C$ where controller can choose to jump or not. At each jump, trajectory can move to a different Euclidean space. We allow the cost functionals to be unbounded with certain growth and hence the corresponding value function can be unbounded. We characterize the value function as the unique viscosity solution of the associated quasivariational inequality in a suitable function class. We also consider the evolutionary, finite horizon hybrid control problem with similar model and prove that the value function is the unique viscosity solution in the continuous function class while allowing cost functionals as well as the dynamics to be unbounded.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا