ترغب بنشر مسار تعليمي؟ اضغط هنا

Next-Term Student Performance Prediction: A Recommender Systems Approach

73   0   0.0 ( 0 )
 نشر من قبل Mack Sweeney
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

An enduring issue in higher education is student retention to successful graduation. National statistics indicate that most higher education institutions have four-year degree completion rates around 50 percent, or just half of their student populations. While there are prediction models which illuminate what factors assist with college student success, interventions that support course selections on a semester-to-semester basis have yet to be deeply understood. To further this goal, we develop a system to predict students grades in the courses they will enroll in during the next enrollment term by learning patterns from historical transcript data coupled with additional information about students, courses and the instructors teaching them. We explore a variety of classic and state-of-the-art techniques which have proven effective for recommendation tasks in the e-commerce domain. In our experiments, Factorization Machines (FM), Random Forests (RF), and the Personalized Multi-Linear Regression model achieve the lowest prediction error. Application of a novel feature selection technique is key to the predictive success and interpretability of the FM. By comparing feature importance across populations and across models, we uncover strong connections between instructor characteristics and student performance. We also discover key differences between transfer and non-transfer students. Ultimately we find that a hybrid FM-RF method can be used to accurately predict grades for both new and returning students taking both new and existing courses. Application of these techniques holds promise for student degree planning, instructor interventions, and personalized advising, all of which could improve retention and academic performance.



قيم البحث

اقرأ أيضاً

122 - Chi Ho Yeung 2015
Recommender systems are present in many web applications to guide our choices. They increase sales and benefit sellers, but whether they benefit customers by providing relevant products is questionable. Here we introduce a model to examine the benefi t of recommender systems for users, and found that recommendations from the system can be equivalent to random draws if one relies too strongly on the system. Nevertheless, with sufficient information about user preferences, recommendations become accurate and an abrupt transition to this accurate regime is observed for some algorithms. On the other hand, we found that a high accuracy evaluated by common accuracy metrics does not necessarily correspond to a high real accuracy nor a benefit for users, which serves as an alarm for operators and researchers of recommender systems. We tested our model with a real dataset and observed similar behaviors. Finally, a recommendation approach with improved accuracy is suggested. These results imply that recommender systems can benefit users, but relying too strongly on the system may render the system ineffective.
We study a model of user decision-making in the context of recommender systems via numerical simulation. Our model provides an explanation for the findings of Nguyen, et. al (2014), where, in environments where recommender systems are typically deplo yed, users consume increasingly similar items over time even without recommendation. We find that recommendation alleviates these natural filter-bubble effects, but that it also leads to an increase in homogeneity across users, resulting in a trade-off between homogenizing across-user consumption and diversifying within-user consumption. Finally, we discuss how our model highlights the importance of collecting data on user beliefs and their evolution over time both to design better recommendations and to further understand their impact.
In higher educational institutes, many students have to struggle hard to complete different courses since there is no dedicated support offered to students who need special attention in the registered courses. Machine learning techniques can be utili zed for students grades prediction in different courses. Such techniques would help students to improve their performance based on predicted grades and would enable instructors to identify such individuals who might need assistance in the courses. In this paper, we use Collaborative Filtering (CF), Matrix Factorization (MF), and Restricted Boltzmann Machines (RBM) techniques to systematically analyze a real-world data collected from Information Technology University (ITU), Lahore, Pakistan. We evaluate the academic performance of ITU students who got admission in the bachelors degree program in ITUs Electrical Engineering department. The RBM technique is found to be better than the other techniques used in predicting the students performance in the particular course.
The swift transitions in higher education after the COVID-19 outbreak identified a gap in the pedagogical support available to faculty. We propose a smart, knowledge-based chatbot that addresses issues of knowledge distillation and provides faculty w ith personalized recommendations. Our collaborative system crowdsources useful pedagogical practices and continuously filters recommendations based on theory and user feedback, thus enhancing the experiences of subsequent peers. We build a prototype for our local STEM faculty as a proof concept and receive favorable feedback that encourages us to extend our development and outreach, especially to underresourced faculty.
Most recommender systems (RS) research assumes that a users utility can be maximized independently of the utility of the other agents (e.g., other users, content providers). In realistic settings, this is often not true---the dynamics of an RS ecosys tem couple the long-term utility of all agents. In this work, we explore settings in which content providers cannot remain viable unless they receive a certain level of user engagement. We formulate the recommendation problem in this setting as one of equilibrium selection in the induced dynamical system, and show that it can be solved as an optimal constrained matching problem. Our model ensures the system reaches an equilibrium with maximal social welfare supported by a sufficiently diverse set of viable providers. We demonstrate that even in a simple, stylized dynamical RS model, the standard myopic approach to recommendation---always matching a user to the best provider---performs poorly. We develop several scalable techniques to solve the matching problem, and also draw connections to various notions of user regret and fairness, arguing that these outcomes are fairer in a utilitarian sense.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا