ﻻ يوجد ملخص باللغة العربية
In this thesis we investigate quantum aspects of the Green-Schwarz superstring in various AdS backgrounds relevant for the AdS/CFT correspondence, providing several examples of perturbative computations in the corresponding integrable sigma-models. We start by reviewing in details the supercoset construction of the superstring action in $AdS_5 times S^5$, pointing out the limits of this procedure for $AdS_4$ and $AdS_3$ backgrounds. For the $AdS_4 times CP^3$ case we give a thorough derivation of an alternative action, based on the double-dimensional reduction of eleven-dimensional super-membranes. We then consider the expansion about the BMN vacuum and the S-matrix for the scattering of worldsheet excitations in the decompactification limit. To evaluate its elements efficiently we describe a unitarity-based method resulting in a very compact formula yielding the cut-constructible part of any one-loop two-dimensional S-matrix. In the second part of this review we analyze the superstring action on $AdS_4 times CP^3$ expanded around the null cusp vacuum. The free energy of this model, whose computation we reproduce up to two-loops at strong coupling, is related to the cusp anomalous dimension of the ABJM theory and, indirectly, to a non-trivial effective coupling $h(lambda)$ featuring all integrability-based calculations in $AdS_4/CFT_3$. Finally, we extensively discuss the comparison of the perturbative results and the integrability predictions for the one-loop dispersion relation of GKP excitations. Our results provide valuable data in support of the quantum consistency of the string actions - often debated due to possible issues with cancellation of UV divergences and the lack of manifest power-counting renormalizability - and furnish non-trivial stringent tests for the quantum integrability of the analyzed models.
We present a systematic procedure to extract the dynamics of the low energy soft mode in SYK type models with a single energy scale $J$ and emergent reparametrization symmetry in the IR. This is given in the framework of the perturbation theory schem
The dimensionless parameter $xi = M^2/(16 pi^2 F^2)$, where $F$ is the pion decay constant in the chiral limit and $M$ is the pion mass at leading order in the quark mass, is expected to control the convergence of chiral perturbation theory applicabl
We describe a new perturbation theory for General Relativity, with the chiral first-order Einstein-Cartan action as the starting point. Our main result is a new gauge-fixing procedure that eliminates the connection-to-connection propagator. All other
Generative models in deep learning allow for sampling probability distributions that approximate data distributions. We propose using generative models for making approximate statistical predictions in the string theory landscape. For vacua admitting
Using Z3 asymmetric orbifolds in heterotic string theory, we construct N=1 SUSY three-generation models with the standard model gauge group SU(3)_C times SU(2)_L times U(1)_Y and the left-right symmetric group SU(3)_C times SU(2)_L times SU(2)_R time