ﻻ يوجد ملخص باللغة العربية
The Fourier spectrum at a fractional period is often examined when extracting features from biological sequences and time series. It reflects the inner information structure of the sequences. A fractional period is not uncommon in time series. A typical example is the 3.6 period in protein sequences, which determines the $alpha$-helix secondary structure. Computing the spectrum of a fractional period offers a high-resolution insight into a time series. It has thus become an important approach in genomic analysis. However, computing Fourier spectra of fractional periods by the traditional Fourier transform is computationally expensive. In this paper, we present a novel, fast algorithm for directly computing the fractional period spectrum (FPS) of time series. The algorithm is based on the periodic distribution of signal strength at periodic positions of the time series. We provide theoretical analysis, deduction, and special techniques for reducing the computational costs of the algorithm. The analysis of the computational complexity of the algorithm shows that the algorithm is much faster than traditional Fourier transform. Our algorithm can be applied directly in computing fractional periods in time series from a broad of research fields. The computer programs of the FPS algorithm are available at https://github.com/cyinbox/FPS.
We present a new fast algorithm for computing the Boys function using nonlinear approximation of the integrand via exponentials. The resulting algorithms evaluate the Boys function with real and complex valued arguments and are competitive with previously developed algorithms for the same purpose.
In this paper, we show the following: the Hausdorff dimension of the spectrum of period-doubling Hamiltonian is bigger than $log alpha/log 4$, where $alpha$ is the Golden number; there exists a dense uncountable subset of the spectrum such that for e
The tile-based multiplayer game Mahjong is widely played in Asia and has also become increasingly popular worldwide. Face-to-face or online, each player begins with a hand of 13 tiles and players draw and discard tiles in turn until they complete a w
We present a fast method for evaluating expressions of the form $$ u_j = sum_{i = 1,i ot = j}^n frac{alpha_i}{x_i - x_j}, quad text{for} quad j = 1,ldots,n, $$ where $alpha_i$ are real numbers, and $x_i$ are points in a compact interval of $mathbb{R
The question of whether there exists an approximation procedure to compute the resonances of any Helmholtz resonator, regardless of its particular shape, is addressed. A positive answer is given, and it is shown that all that one has to assume is tha