Clustering implies geometry in networks


الملخص بالإنكليزية

Network models with latent geometry have been used successfully in many applications in network science and other disciplines, yet it is usually impossible to tell if a given real network is geometric, meaning if it is a typical element in an ensemble of random geometric graphs. Here we identify structural properties of networks that guarantee that random graphs having these properties are geometric. Specifically we show that random graphs in which expected degree and clustering of every node are fixed to some constants are equivalent to random geometric graphs on the real line, if clustering is sufficiently strong. Large numbers of triangles, homogeneously distributed across all nodes as in real networks, are thus a consequence of network geometricity. The methods we use to prove this are quite general and applicable to other network ensembles, geometric or not, and to certain problems in quantum gravity.

تحميل البحث