ترغب بنشر مسار تعليمي؟ اضغط هنا

Dualities for root systems with automorphisms and applications to non-split groups

95   0   0.0 ( 0 )
 نشر من قبل Thomas J. Haines
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English
 تأليف Thomas J. Haines




اسأل ChatGPT حول البحث

This article establishes some elementary dualities for root systems with automorphisms. We give several applications to reductive groups over nonarchimedean local fields: (1) the proof of a conjecture of Pappas-Rapoport-Smithling characterizing the extremal elements of the ${ mu }$-admissible sets attached to general non-split groups; (2) for quasi-split groups, a simple uniform description of the Bruhat-Tits {e}chelonnage root system $Sigma_0$, the Knop root system $widetilde{Sigma}_0$, and the Macdonald root system $Sigma_1$, in terms of Galois actions on the absolute roots $Phi$; and (3) for quasi-split groups, the construction of the geometric basis of the center of a parahoric Hecke algebra, and the expression of certain important elements of the stable Bernstein center in terms of this basis.



قيم البحث

اقرأ أيضاً

We establish a categorical version of Vogan duality for quasi-split real groups. This proves a conjecture of Soergel in the quasi-split case.
364 - Jinwei Yang , Zhiwei Yun 2019
For a classical group $G$ over a field $F$ together with a finite-order automorphism $theta$ that acts compatibly on $F$, we describe the fixed point subgroup of $theta$ on $G$ and the eigenspaces of $theta$ on the Lie algebra $mathfrak{g}$ in terms of cyclic quivers with involution. More precise classification is given when $mathfrak{g}$ is a loop Lie algebra, i.e., when $F=mathbb{C}((t))$.
A root system is splint if it is a decomposition into a union of two root systems. Examples of such root systems arise naturally in studying embeddings of reductive Lie subalgebras into simple Lie algebras. Given a splint root system, one can try to understand its branching rule. In this paper we discuss methods to understand such branching rules, and give precise formulas for specific cases, including the restriction functor from the exceptional Lie algebra $mathfrak{g}_2$ to $mathfrak{sl}_3$.
We study a correction factor for Kac-Moody root systems which arises in the theory of $p$-adic Kac-Moody groups. In affine type, this factor is known, and its explicit computation is the content of the Macdonald constant term conjecture. The data of the correction factor can be encoded as a collection of polynomials $m_lambda in mathbb{Z}[t]$ indexed by positive imaginary roots $lambda$. At $t=0$ these polynomials evaluate to the root multiplicities, so we consider $m_lambda$ to be a $t$-deformation of $mathrm{mult} (lambda)$. We generalize the Peterson algorithm and the Berman-Moody formula for root multiplicities to compute $m_lambda$. As a consequence we deduce fundamental properties of $m_lambda$.
We describe the structure of bimodules (over finite dimensional algebras) which have the property that the functor of tensoring with such a bimodule sends any module to a projective module. The main result is that all such bimodules are $Bbbk$-split in the sense that they factor (inside the tensor category of bimodules) over $Bbbk$-vector spaces. As one application, we show that any simple $2$-category has a faithful $2$-representation inside the $2$-category of $Bbbk$-split bimodules. As another application, we classify simple transitive $2$-representations of the $2$-category of projective bimodules over the algebra $Bbbk[x,y]/(x^2,y^2,xy)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا