ﻻ يوجد ملخص باللغة العربية
Community structures detection in complex network is important for understanding not only the topological structures of the network, but also the functions of it. Stochastic block model and nonnegative matrix factorization are two widely used methods for community detection, which are proposed from different perspectives. In this paper, the relations between them are studied. The logarithm of likelihood function for stochastic block model can be reformulated under the framework of nonnegative matrix factorization. Besides the model equivalence, the algorithms employed by the two methods are different. Preliminary numerical experiments are carried out to compare the behaviors of the algorithms.
Community structures detection is one of the fundamental problems in complex network analysis towards understanding the topology structures of the network and the functions of it. Nonnegative matrix factorization (NMF) is a widely used method for com
Nonnegative matrix factorization (NMF) has become a prominent technique for the analysis of image databases, text databases and other information retrieval and clustering applications. In this report, we define an exact version of NMF. Then we establ
Fully unsupervised topic models have found fantastic success in document clustering and classification. However, these models often suffer from the tendency to learn less-than-meaningful or even redundant topics when the data is biased towards a set
Community structures detection in signed network is very important for understanding not only the topology structures of signed networks, but also the functions of them, such as information diffusion, epidemic spreading, etc. In this paper, we develo
In recent years, semi-supervised multi-view nonnegative matrix factorization (MVNMF) algorithms have achieved promising performances for multi-view clustering. While most of semi-supervised MVNMFs have failed to effectively consider discriminative in