ترغب بنشر مسار تعليمي؟ اضغط هنا

Long range phase coherencein double barrier magnetic tunnel junctions with large thick metallic quantum well

119   0   0.0 ( 0 )
 نشر من قبل Bingshan Tao
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Double barrier heterostructures are model systems for the study of electron tunneling and discrete energy levels in a quantum well (QW). Until now resonant tunneling phenomena in metallicQW have been observed for limited thicknesses (1-2 nm) under which electron phase coherence is conserved. In the present study we show evidence of QW resonance states in Fe QW up to12 nmthick and at room temperature in fully epitaxial doubleMgAlOxbarrier magnetic tunnel junctions. The electron phase coherence displayed in this QWis of unprecedented quality because ofa homogenous interface phase shift due to the small lattice mismatch at the Fe/MgAlOx interface. The physical understanding of the critical role of interface strain on QW phase coherence will greatly promote the development of the spin-dependent quantum resonant tunneling applications.



قيم البحث

اقرأ أيضاً

We theoretically study the recently observed tunnel-barrier-enhanced dc voltage signals generated by magnetization precession in magnetic tunnel junctions. While the spin pumping is suppressed by the high tunneling impedance, two complimentary proces ses are predicted to result in a sizable voltage generation in ferromagnet (F)|insulator (I)|normal-metal (N) and F|I|F junctions, with one ferromagnet being resonantly excited. Magnetic dynamics in F|I|F systems induces a robust charge pumping, translating into voltage in open circuits. In addition, dynamics in a single ferromagnetic layer develops longitudinal spin accumulation inside the ferromagnet. A tunnel barrier then acts as a nonintrusive probe that converts the spin accumulation into a measurable voltage. Neither of the proposed mechanisms suffers from spin relaxation, which is typically fast on the scale of the exponentially slow tunneling rates. The longitudinal spin-accumulation buildup, however, is very sensitive to the phenomenological ingredients of the spin-relaxation picture.
Naturally random devices that exploit ambient thermal noise have recently attracted attention as hardware primitives for accelerating probabilistic computing applications. One such approach is to use a low barrier nanomagnet as the free layer of a ma gnetic tunnel junction (MTJ) whose magnetic fluctuations are converted to resistance fluctuations in the presence of a stable fixed layer. Here, we propose and theoretically analyze a magnetic tunnel junction with no fixed layers but two free layers that are circularly shaped disk magnets. We use an experimentally benchmarked model that accounts for finite temperature magnetization dynamics, bias-dependent charge and spin-polarized currents as well as the dipolar coupling between the free layers. We obtain analytical results for statistical averages of fluctuations that are in good agreement with the numerical model. We find that the free layers with low diameters fluctuate to randomize the resistance of the MTJ in an approximately bias-independent manner. We show how such MTJs can be used to build a binary stochastic neuron (or a p-bit) in hardware. Unlike earlier stochastic MTJs that need to operate at a specific bias point to produce random fluctuations, the proposed design can be random for a wide range of bias values, independent of spin-transfer-torque pinning. Moreover, in the absence of a carefully optimized stabled fixed layer, the symmetric double-free layer stack can be manufactured using present day Magnetoresistive Random Access Memory (MRAM) technology by minimal changes to the fabrication process. Such devices can be used as hardware accelerators in energy-efficient computing schemes that require a large throughput of tunably random bits.
388 - J. Peralta-Ramos , , A. M. Llois 2008
In this contribution, we calculate in a self-consistent way the ballistic transmission as a function of energy of one Fe/MgO (001) single-barrier and one double-barrier tunnel junction, relating them to their electronic structure. The transmission sp ectra of each kind of junction is calculated at different applied bias voltages. We focus on the impact that bias has on the resonant tunneling mediated by surface and quantum well states. The calculations are done in the coherent regime, using a combination of density functional theory and non-equilibrium Greens functions, as implemented in the {it ab initio} code {it SMEAGOL}. We conclude that, for both kinds of junction, the transmission functions depend on the applied bias voltage. In the single-barrier junction, transport mediated by resonant Fe minority surface states is rapidly destroyed by bias. In the double-barrier junction, the appearance of resonant tunneling through majority quantum well states is strongly affected by bias.
Spin caloritronics studies the interplay between charge-, heat- and spin-currents, which are initiated by temperature gradients in magnetic nanostructures. A plethora of new phenomena has been discovered that promises, e.g., to make wasted heat in el ectronic devices useable or to provide new read-out mechanisms for information. However, only few materials have been studied so far with Seebeck voltages of only some {mu}V, which hampers applications. Here, we demonstrate that half-metallic Heusler compounds are hot candidates for enhancing spin-dependent thermoelectric effects. This becomes evident when considering the asymmetry of the spin-split density of electronic states around the Fermi level that determines the spin-dependent thermoelectric transport in magnetic tunnel junctions. We identify Co$_2$FeAl and Co$_2$FeSi Heusler compounds as ideal due to their energy gaps in the minority density of states, and demonstrate devices with substantially larger Seebeck voltages and tunnel magneto-Seebeck effect ratios than the commonly used Co-Fe-B based junctions.
Using theoretical arguments, we show that, in order to exploit half-metallic ferromagnets in tunneling magnetoresistance (TMR) junctions, it is crucial to eliminate interface states at the Fermi level within the half-metallic gap; contrary to this, n o such problem arises in giant magnetoresistance elements. Moreover, based on an a priori understanding of the electronic structure, we propose an antiferromagnetically coupled TMR element, in which interface states are eliminated, as a paradigm of materials design from first principles. Our conclusions are supported by ab-initio calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا