ﻻ يوجد ملخص باللغة العربية
We study the stability of filaments in equilibrium between gravity and internal as well as external pressure using the grid based AMR-code RAMSES. A homogeneous, straight cylinder below a critical line mass is marginally stable. However, if the cylinder is bent, e.g. with a slight sinusoidal perturbation, an otherwise stable configuration starts to oscillate, is triggered into fragmentation and collapses. This previously unstudied behavior allows a filament to fragment at any given scale, as long as it has slight bends. We call this process `geometrical fragmentation. In our realization the spacing between the cores matches the wavelength of the sinusoidal perturbation, whereas up to now, filaments were thought to be only fragmenting on the characteristical scale set by the mass-to-line ratio. Using first principles, we derive the oscillation period as well as the collapse timescale analytically. To enable a direct comparison with observations, we study the line-of-sight velocity for different inclinations. We show that the overall oscillation pattern can hide the infall signature of cores.
Fragmentation of filaments into dense cores is thought to be an important step in forming stars. The bar-mode instability of spherically collapsing cores found in previous linear analysis invokes a possibility of re-fragmentation of the cores due to
We investigate the formation and fragmentation of discs using a suite of three-dimensional smoothed particle radiative magnetohydrodynamics simulations. Our models are initialised as 1M$_odot$ rotating Bonnor-Ebert spheres that are threaded with a un
The fragmentation of filaments in molecular clouds has attracted a lot of attention as there seems to be a relation between the evolution of filaments and star formation. The study of the fragmentation process has been motivated by simple analytical
Since the onset of the `space revolution of high-precision high-cadence photometry, asteroseismology has been demonstrated as a powerful tool for informing Galactic archaeology investigations. The launch of the NASA TESS mission has enabled seismic-b
Understanding the formation of wide binary systems of very low mass stars (M $le$ 0.1 Msun) is challenging. The most obvious route is via widely separated low-mass collapsing fragments produced through turbulent fragmentation of a molecular core. How