ﻻ يوجد ملخص باللغة العربية
We provide a method of designing protocols for implementing multipartite quantum measurements when the parties are restricted to local operations and classical communication (LOCC). For each finite integer number of rounds, $r$, the method succeeds in every case for which an $r$-round protocol exists for the measurement under consideration, and failure of the method has the immediate implication that the measurement under consideration cannot be implemented by LOCC no matter how many rounds of communication are allowed, including when the number of rounds is allowed to be infinite. It turns out that this method shows---often with relative ease---the impossibility by LOCC for a number of examples, including cases where this was not previously known, as well as the example that first demonstrated what has famously become known as nonlocality without entanglement.
In a recent paper cite{mySEPvsLOCC}, we showed how to construct a quantum protocol for implementing a bipartite, separable quantum measurement using only local operations on subsystems and classical communication between parties (LOCC) within any fix
Local quantum uncertainty captures purely quantum correlations excluding their classical counterpart. This measure is quantum discord type, however with the advantage that there is no need to carry out the complicated optimization procedure over meas
Given a quantum system on many qubits split into a few different parties, how much total correlations are there between these parties? Such a quantity -- aimed to measure the deviation of the global quantum state from an uncorrelated state with the s
In recent years, the use of information principles to understand quantum correlations has been very successful. Unfortunately, all principles considered so far have a bipartite formulation, but intrinsically multipartite principles, yet to be discove
In this paper, we mainly study the local distinguishable multipartite quantum states by local operations and classical communication (LOCC) in $m_1otimes m_2otimesldotsotimes m_n$ , where the quantum system $m_1$ belongs to Alice, $m_2$ belongs to Bo