ﻻ يوجد ملخص باللغة العربية
In this paper we consider a particular version of the random walk with restarts: random reset events which bring suddenly the system to the starting value. We analyze its relevant statistical properties like the transition probability and show how an equilibrium state appears. Formulas for the first-passage time, high-water marks and other extreme statistics are also derived: we consider counting problems associated naturally to the system. Finally we indicate feasible generalizations useful for interpreting different physical effects.
Exact results are obtained for random walks on finite lattice tubes with a single source and absorbing lattice sites at the ends. Explicit formulae are derived for the absorption probabilities at the ends and for the expectations that a random walk w
In [BEI] we introduced a Levy process on a hierarchical lattice which is four dimensional, in the sense that the Greens function for the process equals 1/x^2. If the process is modified so as to be weakly self-repelling, it was shown that at the crit
We consider the model of random sequential adsorption, with depositing objects, as well as those already at the surface, decreasing in size according to a specified time dependence, from a larger initial value to a finite value in the large time limi
Standard approach to dynamical random matrix models relies on the description of trajectories of eigenvalues. Using the analogy from optics, based on the duality between the Fermat principle(trajectories) and the Huygens principle (wavefronts), we fo
We analyze the dynamics of a population of independent random walkers on a graph and develop a simple model of epidemic spreading. We assume that each walker visits independently the nodes of a finite ergodic graph in a discrete-time markovian walk g