ﻻ يوجد ملخص باللغة العربية
We use a holographic method to investigate thermalization of a boost-invariant strongly interacting non-Abelian plasma. Boundary sourcing, a distorsion of the boundary metric, is employed to drive the system far from equilibrium. Thermalization is analyzed through nonlocal probes: the equal-time two-point correlation function of large conformal dimension operators in the boundary theory, and Wilson loops of different shapes. We study the dependence of the thermalization time on the size of the probes, and compare the results to the ones obtained using local observables: the onset of thermalization is first observed at short distances.
We develop a method to obtain fermion spectral functions non-perturbatively in a non-Abelian gauge theory with high occupation numbers of gauge fields. After recovering the free field case, we extract the spectral function of fermions in a highly occ
We determine the energy it takes to move a test quark along a circle of radius L with angular frequency w through the strongly coupled plasma of N=4 supersymmetric Yang-Mills (SYM) theory. We find that for most values of L and w the energy deposited
This review cover our current understanding of strongly coupled Quark-Gluon Plasma (sQGP), especially theoretical progress in (i) explaining the RHIC data by hydrodynamics, (ii) describing lattice data using electric-magnetic duality; (iii) understan
Jets and photons could play an important role in finding the transport coefficients of the quark-gluon plasma. To this end we analyze their interaction with a non-equilibrium quark-gluon plasma. Using new field-theoretical tools we derive two-point c
We study weakly nonlinear wave perturbations propagating in a cold nonrelativistic and magnetized ideal quark-gluon plasma. We show that such perturbations can be described by the Ostrovsky equation. The derivation of this equation is presented for t