ترغب بنشر مسار تعليمي؟ اضغط هنا

Chiral Quasiparticles at the Fermi Surface of the Weyl Semimetal TaAs

55   0   0.0 ( 0 )
 نشر من قبل Frank Arnold PhD
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Tantalum arsenide is a member of the non-centrosymmetric monopnictides, which are putative Weyl semimetals. In these materials, three-dimensional chiral massless quasiparticles, the so-called Weyl fermions, are predicted to induce novel quantum mechanical phenomena, such as the chiral anomaly and topological surface states. However, their chirality is only well-defined if the Fermi level is close enough to the Weyl points that separate Fermi surface pockets of opposite chirality exist. In this article, we present the bulk Fermi surface topology of high quality single crystals of TaAs, as determined by angle-dependent Shubnikov-de Haas and de Haas-van Alphen measurements combined with ab-initio band-structure calculations. Quantum oscillations originating from three different types of Fermi surface pocket were found in magnetization, magnetic torque, and mag- netoresistance measurements performed in magnetic fields up to 14 T and temperatures down to 1.8 K. Of these Fermi pockets, two are pairs of topologically non-trivial electron pockets around the Weyl points and one is a trivial hole pocket. Unlike the other members of the non-centrosymmetric monopnictides, TaAs is the first Weyl semimetal candidate with the Fermi energy suffciently close to both types of Weyl points to generate chiral quasiparticles at the Fermi surface.



قيم البحث

اقرأ أيضاً

254 - B. Q. Lv , H. M. Weng , B. B. Fu 2015
Weyl semimetals are a class of materials that can be regarded as three-dimensional analogs of graphene breaking time reversal or inversion symmetry. Electrons in a Weyl semimetal behave as Weyl fermions, which have many exotic properties, such as chi ral anomaly and magnetic monopoles in the crystal momentum space. The surface state of a Weyl semimetal displays pairs of entangled Fermi arcs at two opposite surfaces. However, the existence of Weyl semimetals has not yet been proved experimentally. Here we report the experimental realization of a Weyl semimetal in TaAs by observing Fermi arcs formed by its surface states using angle-resolved photoemission spectroscopy. Our first-principles calculations, matching remarkably well with the experimental results, further confirm that TaAs is a Weyl semimetal.
While all media can exhibit first-order conductivity describing current linearly proportional to electric field, $E$, the second-order conductivity, $sigma^{(2)}$ , relating current to $E^2$, is nonzero only when inversion symmetry is broken. Second order nonlinear optical responses are powerful tools in basic research, as probes of symmetry breaking, and in optical technology as the basis for generating currents from far-infrared to X-ray wavelengths. The recent surge of interest in Weyl semimetals with acentric crystal structures has led to the discovery of a host of $sigma^{(2)}$ -related phenomena in this class of materials, such as polarization-selective conversion of light to dc current (photogalvanic effects) and the observation of giant second-harmonic generation (SHG) efficiency in TaAs at photon energy 1.5 eV. Here, we present measurements of the SHG spectrum of TaAs revealing that the response at 1.5 eV corresponds to the high-energy tail of a resonance at 0.7 eV, at which point the second harmonic conductivity is approximately 200 times larger than seen in the standard candle nonlinear crystal, GaAs. This remarkably large SHG response provokes the question of ultimate limits on $sigma^{(2)}$ , which we address by a new theorem relating frequency-integrated nonlinear response functions to the third cumulant (or skewness) of the polarization distribution function in the ground state. This theorem provides considerable insight into the factors that lead to the largest possible second-order nonlinear response, specifically showing that the spectral weight is unbounded and potentially divergent when the possibility of next-neighbor hopping is included.
393 - R. D. dos Reis , S. C. Wu , Y. Sun 2016
We report on the pressure evolution of the Fermi surface topology of the Weyl semimetal NbP, probed by Shubnikov-de Haas oscillations in the magnetoresistance combined with ab-initio calculations of the band-structure. Although we observe a drastic e ffect on the amplitudes of the quantum oscillations, the frequencies only exhibit a weak pressure dependence up to 2.8 GPa. The pressure-induce variations in the oscillation frequencies are consistent with our band-structure calculations. Furthermore, we can relate the changes in the amplitudes to small modifications in the shape of the Fermi surface. Our findings evidenced the stability of the electronic band structure of NbP and demonstrate the power of combining quantum-oscillation studies and band-structure calculations to investigate pressure effects on the Fermi-surface topology in Weyl semimetals.
The Weyl semimetal NbP was found to exhibit topological Fermi arcs and exotic magneto-transport properties. Here, we report on magnetic quantum-oscillation measurements on NbP and construct the 3D Fermi surface with the help of band-structure calcula tions. We reveal a pair of spin-orbit-split electron pockets at the Fermi energy and a similar pair of hole pockets, all of which are strongly anisotropic. The Fermi surface well explains the linear magnetoresistance observed in high magnetic fields by the quantum-limit scenario. The Weyl points that are located in the $k_z approx pi/c$ plane are found to exist 5 meV above the Fermi energy. Therefore, we predict that the chiral anomaly effect can be realized in NbP by electron doping to drive the Fermi energy to the Weyl points.
Symmetry plays a central role in conventional and topological phases of matter, making the ability to optically drive symmetry change a critical step in developing future technologies that rely on such control. Topological materials, like the newly d iscovered topological semimetals, are particularly sensitive to a breaking or restoring of time-reversal and crystalline symmetries, which affect both bulk and surface electronic states. While previous studies have focused on controlling symmetry via coupling to the crystal lattice, we demonstrate here an all-electronic mechanism based on photocurrent generation. Using second-harmonic generation spectroscopy as a sensitive probe of symmetry change, we observe an ultrafast breaking of time-reversal and spatial symmetries following femtosecond optical excitation in the prototypical type-I Weyl semimetal TaAs. Our results show that optically driven photocurrents can be tailored to explicitly break electronic symmetry in a generic fashion, opening up the possibility of driving phase transitions between symmetry-protected states on ultrafast time scales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا