ترغب بنشر مسار تعليمي؟ اضغط هنا

Signatures of sneutrino dark matter in an extension of the CMSSM

107   0   0.0 ( 0 )
 نشر من قبل Shankha Banerjee
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Current data (LHC direct searches, Higgs mass, dark matter-related bounds) severely affect the constrained minimal SUSY standard model (CMSSM) with neutralinos as dark matter candidates. But the evidence for neutrino masses coming from oscillations requires extending the SM with at least right-handed neutrinos with a Dirac mass term. In turn, this implies extending the CMSSM with right-handed sneutrino superpartners, a scenario we dub $tilde u$CMSSM. These additional states constitute alternative dark matter candidates of the superWIMP type, produced via the decay of the long-lived next-to-lightest SUSY particle (NLSP). Here we consider the interesting and likely case where the NLSP is a $tilde{tau}$: despite the modest extension with respect to the CMSSM this scenario has the distinctive signatures of heavy, stable charged particles. After taking into account the role played by neutrino mass bounds and the specific cosmological bounds from the big bang nucleosynthesis in selecting the viable parameter space, we discuss the excellent discovery prospects for this model at the future runs of the LHC. We show that it is possible to probe $tilde{tau}$ masses up to 600 GeV at the 14 TeV LHC with $mathcal{L} = 1100$ fb$^{-1}$ when one considers a pair production of staus with two or more hard jets through all SUSY processes. We also show the complementary discovery prospects from a direct $tilde{tau}$ pair production, as well as at the new experiment MoEDAL.



قيم البحث

اقرأ أيضاً

We derive spectral lineshapes of the expected signal for a haloscope experiment searching for axionlike dark matter. The knowledge of these lineshapes is needed to optimize the experimental design and data analysis procedure. We extend the previously known results for the axion-photon and axion-gluon couplings to the case of gradient (axion-fermion) coupling. A unique feature of the gradient interaction is its dependence not only on magnitudes but also on directions of velocities of galactic halo particles, which leads to directional sensitivity of the corresponding haloscope. We also discuss the daily and annual modulations of the gradient signal caused by the Earths rotational and orbital motions. In the case of detection, these periodic modulations will be an important confirmation that the signal is sourced by axionlike particles in the halo of our galaxy.
Dark matter can be captured by celestial objects and accumulate at their centers, forming a core of dark matter that can collapse to a small black hole, provided that the annihilation rate is small or zero. If the nascent black hole is big enough, it will grow to consume the star or planet. We calculate the rate of dark matter accumulation in the Sun and Earth, and use their continued existence to place novel constraints on high mass asymmetric dark matter interactions. We also identify and detail less destructive signatures: a newly-formed black hole can be small enough to evaporate via Hawking radiation, resulting in an anomalous heat flow emanating from Earth, or in a flux of high-energy neutrinos from the Sun observable at IceCube. The latter signature is entirely new, and we find that it may cover large regions of parameter space that are not probed by any other method.
Nuggets---very large stable bound objects arising in the presence of a sufficiently attractive and long-range force and in the absence of a dark Coulomb force---are a smoking gun signature for Asymmetric Dark Matter (ADM). The cosmology of ADM nugget s is both generic and unique: nuggets feature highly exothermic fusion processes, which can impact the shape of the core in galaxies, as well as give rise to rare dark star formation. We find, considering the properties of nuggets in a generic extended nuclear model with both attractive and repulsive forces, that self-interaction constraints place an upper bound on nugget masses at the freeze-out of synthesis in the ballpark of $M_{rm fo} lesssim 10^{16}$ GeV. We also show that indirect detection strongly constrains models where the scalar mediator binding the nuggets mixes with the Higgs.
Very light right-handed (RH) sneutrinos in the Next-to-Minimal Supersymmetric Standard Model can be viable candidates for cold dark matter. We investigate the prospects for their direct detection, addressing their compatibility with the recent signal observed by the CoGeNT detector, and study the implications for Higgs phenomenology. We find that in order to reproduce the correct relic abundance very light RH sneutrinos can annihilate into either a fermion-antifermion pair, very light pseudoscalar Higgses or RH neutrinos. If the main annihilation channel is into fermions, we point out that RH sneutrinos could naturally account for the CoGeNT signal. Furthermore, the lightest Higgs has a very large invisible decay width, and in some cases the second-lightest Higgs too. On the other hand, if the RH sneutrino annihilates mostly into pseudoscalars or RH neutrinos the predictions for direct detection are below the current experimental sensitivities and satisfy the constraints set by CDMS and XENON. We also calculate the gamma ray flux from RH sneutrino annihilation in the Galactic centre, including as an interesting new possibility RH neutrinos in the final state. These are produced through a resonance with the Higgs and the resulting flux can exhibit a significant Breit-Wigner enhancement.
Primordial black holes (PBHs) are a potential dark matter candidate whose masses can span over many orders of magnitude. If they have masses in the $10^{15}-10^{17}$ g range, they can emit sizeable fluxes of MeV neutrinos through evaporation via Hawk ing radiation. We explore the possibility of detecting light (non-)rotating PBHs with future neutrino experiments. We focus on two next generation facilities: the Deep Underground Neutrino Experiment (DUNE) and THEIA. We simulate the expected event spectra at both experiments assuming different PBH mass distributions and spins, and we extract the expected 95% C.L. sensitivities to these scenarios. Our analysis shows that future neutrino experiments like DUNE and THEIA will be able to set competitive constraints on PBH dark matter, thus providing complementary probes in a part of the PBH parameter space currently constrained mainly by photon data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا