ﻻ يوجد ملخص باللغة العربية
We consider autonomous stochastic ordinary differential equations (SDEs) and weak approximations of their solutions for a general class of sufficiently smooth path-dependent functionals f. Based on tools from functional It^o calculus, such as the functional It^o formula and functional Kolmogorov equation, we derive a general representation formula for the weak error $E(f(X_T)-f(tilde X_T))$, where $X_T$ and $tilde X_T$ are the paths of the solution process and its approximation up to time T. The functional $f:C([0,T],R^d)to R$ is assumed to be twice continuously Frechet differentiable with derivatives of polynomial growth. The usefulness of the formula is demonstrated in the one dimensional setting by showing that if the solution to the SDE is approximated via the linearly time-interpolated explicit Euler method, then the rate of weak convergence for sufficiently regular f is 1.
A peculiar feature of It^os calculus is that it is an integral calculus that gives no explicit derivative with a systematic differentiation theory counterpart, as in elementary calculus. So, can we define a pathwise stochastic derivative of semimarti
In this paper we provide an It{^o}-Tanaka-Wentzell trick in a non semimartingale context. We apply this result to the study of a fractional SDE with irregular drift coefficient.
Observing that the recent developments of the recursive (product) quantization method induces a family of Markov chains which includes all standard discretization schemes of diffusions processes , we propose to compute a general error bound induced b
In this note, we prove an It^o formula for the isochron map of a reaction-diffusion system. This follows the proof of a new result which states that the second derivative of the isochron map of a reaction-diffusion system is trace class. This result,
Using Dupires notion of vertical derivative, we provide a functional (path-dependent) extension of the It^os formula of Gozzi and Russo (2006) that applies to C^{0,1}-functions of continuous weak Dirichlet processes. It is motivated and illustrated b