ﻻ يوجد ملخص باللغة العربية
Hydrides are simple compounds containing one or a few hydrogen atoms bonded to a heavier atom. They are fundamental precursor molecules in cosmic chemistry and many hydride ions have become observable in high quality for the first time thanks to the Herschel Space Observatory. Ionized hydrides, such as CH+ and OH+, and also HCO+ that affect the chemistry of molecules such as water, provide complementary information on irradiation by far UV (FUV) or X-rays and gas temperature. The targeted lines of CH+, OH+, H2O+, C+ and CH are detected mostly in blue-shifted absorption. H3O+ and SH+ are detected in emission and only toward some high-mass objects. The observed line parameters and correlations suggest two different origins, related to gas entrained by the outflows and to the circumstellar envelope. The column density ratios of CH+/OH+ are estimated from chemical slab models, assuming that the H2 density is given by the specific density model of each object at the beam radius. For the low-mass YSOs the observed ratio can be reproduced for an FUV flux of 2-400 times the ISRF at the location of the molecules. In two high-mass objects, the UV flux is 20-200 times the ISRF derived from absorption lines, and 300-600 ISRF using emission lines. If the FUV flux required for low-mass objects originates at the central protostar, a substantial FUV luminosity, up to 1.5 L_sun, is required. There is no molecular evidence for X-ray induced chemistry in the low-mass objects on the observed scales of a few 1000 AU. For high-mass regions, the FUV flux required to produce the observed molecular ratios is smaller than the unattenuated flux expected from the central object(s) at the Herschel beam radius. This is consistent with an FUV flux reduced by circumstellar extinction or by bloating of the protostar.
Water probes the dynamics in young stellar objects (YSOs) effectively, especially shocks in molecular outflows. It is a key molecule for exploring whether the physical properties of low-mass protostars can be extrapolated to massive YSOs. As part of
The X-ray light-curves of the recurring outbursts observed in low-mass X-ray binaries provide strong test beds for constraining (still) poorly understood disc-accretion processes. These light-curves act as a powerful diagnostic to probe the physics b
(Abridged) We present a survey of the water emission in a sample of more than 20 outflows from low mass young stellar objects with the goal of characterizing the physical and chemical conditions of the emitting gas. We have used the HIFI and PACS ins
Close binary systems provide an excellent tool to determine stellar parameters such as radii and masses with a high degree of precision. Due to the high rotational velocities, most of these systems exhibit strong signs of magnetic activity, which has
X-ray spectral analysis of quiescent low-mass X-ray binaries (LMXBs) has been one of the most common tools to measure the radius of neutron stars (NSs) for over a decade. So far, this method has been mainly applied to NSs in globular clusters, primar