ﻻ يوجد ملخص باللغة العربية
We classify models of the Dirac neutrino mass by concentrating on flavor structures of the mass matrix. The advantage of our classification is that we do not need to specify detail of models except for Yukawa interactions because flavor structures can be given only by products of Yukawa matrices. All possible Yukawa interactions between leptons (including the right-handed neutrino) are taken into account by introducing appropriate scalar fields. We also take into account the case with Yukawa interactions of leptons with the dark matter candidate. Then, we see that flavor structures can be classified into seven groups. The result is useful for the efficient test of models of the neutrino mass. One of seven groups can be tested by measuring the absolute neutrino mass. Other two can be tested by probing the violation of the lepton universality in $ell to ell^prime u overline{ u}$. In order to test the other four groups, we can rely on searches for new scalar particles at collider experiments.
We discuss what kinds of combinations of Yukawa interactions can generate the Majorana neutrino mass matrix. We concentrate on the flavor structure of the neutrino mass matrix because it does not depend on details of the models except for Yukawa inte
We study the flavor structure in intersecting D-brane models. We study anomalies of the discrete flavor symmetries. We analyze the Majorana neutrino masses, which can be generated by D-brane instanton effects. It is found that a certain pattern of ma
Trilepton event represents one of the probes of the new physics at high energy colliders. In this talk, we consider the search for processes with final states $ell_{alpha}^{pm }ell_{beta}^{pm}ell_{gamma}^{mp}$ + $slashed{E}_{T}$ where ${alpha}$, ${
We discuss first the flavor mixing of the quarks, using the texture zero mass matrices. Then we study a similar model for the mass matrices of the leptons. We are able to relate the mass eigenvalues of the charged leptons and of the neutrinos to the
We assess the sensitivity of the LHC, its high energy upgrade, and a prospective 100 TeV hadronic collider to the Dirac Yukawa coupling of the heavy neutrinos in left-right symmetric models (LRSMs). We focus specifically on the trilepton final state