ترغب بنشر مسار تعليمي؟ اضغط هنا

Josephson oscillation linewidth of ion-irradiated YBa$_2$Cu$_3$O$_7$ junctions

211   0   0.0 ( 0 )
 نشر من قبل Aleksei Sharafiev
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the noise properties of ion-irradiated YBa$_2$Cu$_3$O$_7$ Josephson junctions. This work aims at investigating the linewidth of the Josephson oscillation with a detector response experiment at $simeq$132 GHz. Experimental results are compared with a simple analytical model based on the Likharev-Semenov equation and the de Gennes dirty limit approximation. We show that the main source of low-frequency fluctuations in these junctions is the broadband Johnson noise and that the excess ($frac{1}{f}$) noise contribution does not prevail in the temperature range of interest, as reported in some other types of high-T$_c$ superconducting Josephson junctions. Finally, we discuss the interest of ion-irradiated junctions to implement frequency-tunable oscillators consisting of synchronized arrays of Josephson junctions.



قيم البحث

اقرأ أيضاً

We designed, fabricated and tested short one dimensional arrays of masked ion-irradiated YBa$_2$Cu$_3$O$_7$ Josephson junctions (JJ) embedded into log-periodic spiral antennas. Our arrays consist of 4 or 8 junctions separated either by 960~nm or 80~n m long areas of undamaged YBCO. Samples with distanced junctions and with closely spaced junctions showed qualitatively different behaviors. Well separated arrays demonstrated giant Shapiro steps in the hundreds-GHz band at 66K and were tested as Josephson mixers with improved impedance matching. All closely spaced arrays behaved as one junction with a lower superconducting transition temperature, hence forming a single weak link on distances up to 880~nm. Such design opens a new way to increase the I$_{c}$R$_{N}$ product of ion-irradiated junctions and we speculate that the phenomena and physics behind it might be similar to the so-called giant Josephson coupling observed in cuprates.
75 - B. A. Gray , S. Middey , G. Conti 2016
The superconductor-to-insulator transition (SIT) induced by means such as external magnetic fields, disorder or spatial confinement is a vivid illustration of a quantum phase transition dramatically affecting the superconducting order parameter. In p ursuit of a new realization of the SIT by interfacial charge transfer, we developed extremely thin superlattices composed of high $T_c$ superconductor YBa$_2$Cu$_3$O$_7$ (YBCO) and colossal magnetoresistance ferromagnet La$_{0.67}$Ca$_{0.33}$MnO$_3$ (LCMO). By using linearly polarized resonant X-ray absorption spectroscopy and magnetic circular dichroism, combined with hard X-ray photoelectron spectroscopy, we derived a complete picture of the interfacial carrier doping in cuprate and manganite atomic layers, leading to the transition from superconducting to an unusual Mott insulating state emerging with the increase of LCMO layer thickness. In addition, contrary to the common perception that only transition metal ions may response to the charge transfer process, we found that charge is also actively compensated by rare-earth and alkaline-earth metal ions of the interface. Such deterministic control of $T_c$ by pure electronic doping without any hindering effects of chemical substitution is another promising route to disentangle the role of disorder on the pseudo-gap and charge density wave phases of underdoped cuprates.
We report numerical simulations of magnetic flux patterns in asymmetric 45$^{circ}$ [001]-tilt grain boundaries in YBa$_2$Cu$_3$O$_{7-x}$ superconducting films. The grain boundaries are treated as Josephson junctions with the critical current density $j_c(x)$ alternating along the junctions. We demonstrate the existence of Josephson vortices with fractional flux quanta for both periodic and random $j_c(x)$. A method is proposed to extract fractional vortices from experimental flux patterns.
We report on the study of the phase dynamics of high critical temperature superconductor Josephson junctions. We realized YBa$_2$Cu$_3$O$_{7-x}$ (YBCO) grain boundary (GB) biepitaxial junctions in the submicron scale, using low loss substrates, and a nalyzed their dissipation by comparing the transport measurements with Monte Carlo simulations. The behavior of the junctions can be fitted using a model based on two quality factors, which results in a frequency dependent damping. Moreover, our devices can be designed to have Josephson energy of the order of the Coulomb energy. In this unusual energy range, phase delocalization strongly influences the devices dynamics, promoting the transition to a quantum phase diffusion regime. We study the signatures of such a transition by combining the outcomes of Monte Carlo simulations with the analysis of the devices parameters, the critical current and the temperature behavior of the low voltage resistance $R_0$.
139 - R. Werner , C. Raisch , A. Ruosi 2010
Heteroepitaxially grown bilayers of ferromagnetic La$_{0.7}$Ca$_{0.3}$MnO$_3$ (LCMO) on top of superconducting YBa$_2$Cu$_3$O$_7$ (YBCO) thin films were investigated by focusing on electric transport properties as well as on magnetism and orbital occ upation at the interface. Transport measurements on YBCO single layers and on YBCO/LCMO bilayers, with different YBCO thickness $d_Y$ and constant LCMO thickness $d_L=50$,nm, show a significant reduction of the superconducting transition temperature $T_c$ only for $d_Y<10$,nm,with only a slightly stronger $T_c$ suppression in the bilayers, as compared to the single layers. X-ray magnetic circular dichroism (XMCD) measurements confirm recently published data of an induced magnetic moment on the interfacial Cu by the ferromagnetically ordered Mn ions, with antiparallel alignment between Cu and Mn moments. However, we observe a significantely larger Cu moment than previously reported, indicating stronger coupling between Cu and Mn at the interface. This in turn could result in an interface with lower transparency, and hence smaller spin diffusion length, that would explain our electric transport data, i.e.smaller $T_c$ suppression. Moreover, linear dichroism measurements did not show any evidence for orbital reconstruction at the interface, indicating that a large change in orbital occupancies through hybridization is not necessary to induce a measurable ferromagnetic moment on the Cu atoms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا