ﻻ يوجد ملخص باللغة العربية
We show that the geodesic period spectrum of a Riemannian 2-orbifold all of whose geodesics are closed depends, up to a constant, only on its orbifold topology and compute it. In the manifold case we recover the fact proved by Gromoll, Grove and Pries that all prime geodesics have the same length. In the appendix we partly strengthen our result in terms of conjugacy of contact forms and explain how to deduce rigidity on the real projective plane based on a systolic inequality due to Pu. (We do not use a Lusternik-Schnirelmann type theorem on the existence of at least three simple closed geodesics.)
We show that on every compact Riemannian 2-orbifold there exist infinitely many closed geodesics of positive length.
Manifolds all of whose geodesics are closed have been studied a lot, but there are only few examples known. The situation is different if one allows in addition for orbifold singularities. We show, nevertheless, that the abundance of new examples is
We study the existence of closed geodesics on compact Riemannian orbifolds, and on noncompact Riemannian manifolds in the presence of a cocompact, isometric group action. We show that every noncontractible Riemannian manifold which admits such an act
Let $Q$ be a closed manifold admitting a locally-free action of a compact Lie group $G$. In this paper we study the properties of geodesic flows on $Q$ given by Riemannian metrics which are invariant by such an action. In particular, we will be inter
We determine the extent to which the collection of $Gamma$-Euler-Satake characteristics classify closed 2-orbifolds. In particular, we show that the closed, connected, effective, orientable 2-orbifolds are classified by the collection of $Gamma$-Eule