ترغب بنشر مسار تعليمي؟ اضغط هنا

The Rotation of the Hot Gas Around the Milky Way

153   0   0.0 ( 0 )
 نشر من قبل Edmund Hodges-Kluck
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The hot gaseous halos of galaxies likely contain a large amount of mass and are an integral part of galaxy formation and evolution. The Milky Way has a 2e6 K halo that is detected in emission and by absorption in the OVII resonance line against bright background AGNs, and for which the best current model is an extended spherical distribution. Using XMM-Newton RGS data, we measure the Doppler shifts of the OVII absorption-line centroids toward an ensemble of AGNs. These Doppler shifts constrain the dynamics of the hot halo, ruling out a stationary halo at about 3sigma and a corotating halo at 2sigma, and leading to a best-fit rotational velocity of 183+/-41 km/s for an extended halo model. These results suggest that the hot gas rotates and that it contains an amount of angular momentum comparable to that in the stellar disk. We examined the possibility of a model with a kinematically distinct disk and spherical halo. To be consistent with the emission-line X-ray data the disk must contribute less than 10% of the column density, implying that the Doppler shifts probe motion in the extended hot halo.



قيم البحث

اقرأ أيضاً

We propose a novel method to constrain the Milky Way (MW) mass $M_{rm vir}$ with its corona temperature observations. For a given corona density profile, one can derive its temperature distribution assuming a generalized equilibrium model with non-th ermal pressure support. While the derived temperature profile decreases substantially with radius, the X-ray-emission-weighted average temperature, which depends most sensitively on $M_{rm vir}$, is quite uniform toward different sight lines, consistent with X-ray observations. For an Navarro-Frenk-White (NFW) total matter distribution, the corona density profile should be cored, and we constrain $M_{rm vir}=(1.19$ - $2.95) times 10^{12} M_{rm sun}$. For a total matter distribution contributed by an NFW dark matter profile and central baryons, the corona density profile should be cuspy and $M_{rm vir,dm}=(1.34$ - $5.44) times 10^{12} M_{rm sun}$. Non-thermal pressure support leads to even higher values of $M_{rm vir}$, while a lower MW mass may be possible if the corona is accelerating outward. This method is independent of the total corona mass, its metallicity, and temperature at very large radii.
In the fundamental quest of the rotation curve of the Milky Way, the tangent-point (TP) method has long been the simplest way to infer velocities for the inner, low latitude regions of the Galactic disk from observations of the gas component. We test the validity of the method on realistic gas distribution and kinematics of the Milky Way, using a numerical simulation of the Galaxy. We show that the resulting velocity profile strongly deviates from the true rotation curve of the simulation, as it overstimates it in the central regions, and underestimates it around the bar corotation. Also, its shape strongly depends on the orientation of the stellar bar. The discrepancies are caused by highly non-uniform azimuthal velocities, and the systematic selection by the TP method of high-velocity gas along the bar and spiral arms, or low-velocity gas in less dense regions. The velocity profile is in good agreement with the rotation curve only beyond corotation, far from massive asymmetric structures. Therefore the observed velocity profile of the Milky Way inferred by the TP method is expected to be very close to the true Galactic rotation curve for 4.5<R<8 kpc. Another consequence is that the Galactic velocity profile for R<4-4.5 kpc is very likely flawed by the non-uniform azimuthal velocities, and does not represent the true Galactic rotation curve, but instead local motions. The real shape of the innermost rotation curve is probably shallower than previously thought. Using a wrong rotation curve has a dramatic impact on the modelling of the mass distribution, in particular for the bulge component of which derived enclosed mass within the central kpc and scale radius are, respectively, twice and half of the actual values. We thus strongly argue against using terminal velocities or the velocity curve from the TP method for modelling the mass distribution of the Milky Way. (abridged)
145 - Smita Mathur 2012
The circumgalactic region of the Milky Way contains a large amount of gaseous mass in the warm-hot phase. The presence of this warm-hot halo observed through $z=0$ X-ray absorption lines is generally agreed upon, but its density, path-length, and mas s is a matter of debate. Here I discuss in detail why different investigations led to different results. The presence of an extended (over 100 kpc) and massive (over ten billion solar masses) warm-hot gaseous halo is supported by observations of other galaxies as well. I briefly discuss the assumption of constant density and end with outlining future prospects.
149 - Q. Daniel Wang 2012
The two papers referred to in the title, claiming the detection of a large-scale massive hot gaseous halo around the Galaxy, have generated a lot of confusion and unwarranted excitement (including public news coverage). However, the papers are seriou sly flawed in many aspects, including problematic analysis and assumptions, as well as mis-reading and mis-interpreting earlier studies, which are inconsistent with the claim. Here we show examples of such flaws.
Flat rotation curves of spiral galaxies are considered as an evidence for dark matter, but the rotation curve of the Milky Way is difficult to measure. Various objects were used to track the rotation curve in the outer parts of the Galaxy, but most s tudies rely on incomplete kinematical information and inaccurate distances. Here, we use a sample of 773 Classical Cepheids with precise distances based on mid-infrared period-luminosity relations coupled with proper motions and radial velocities from Gaia to construct the accurate rotation curve of the Milky Way up to the distance of ~20 kpc from the Galactic center. We use a simple model of Galactic rotation to measure the rotation speed of the Sun Theta_0 = 233.6 +/- 2.8 km/s, assuming a prior on the distance to the Galactic center R_0 = 8.122 +/- 0.031 kpc from the Gravity Collaboration. The rotation curve at Galactocentric distances 4 < R < 20 kpc is nearly flat with a small gradient of -1.34 +/- 0.21 km/s/kpc. This is the most accurate Galactic rotation curve at distances R > 12 kpc constructed so far.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا