ﻻ يوجد ملخص باللغة العربية
We present an $O(nlog n)$-time algorithm that determines whether a given planar $n$-gon is weakly simple. This improves upon an $O(n^2log n)$-time algorithm by Chang, Erickson, and Xu (2015). Weakly simple polygons are required as input for several geometric algorithms. As such, how to recognize simple or weakly simple polygons is a fundamental question.
In this extended abstract, we present a PTAS for guarding the vertices of a weakly-visible polygon $P$ from a subset of its vertices, or in other words, a PTAS for computing a minimum dominating set of the visibility graph of the vertices of $P$. We
Given a set $S$ of $m$ point sites in a simple polygon $P$ of $n$ vertices, we consider the problem of computing the geodesic farthest-point Voronoi diagram for $S$ in $P$. It is known that the problem has an $Omega(n+mlog m)$ time lower bound. Previ
We study several problems concerning convex polygons whose vertices lie in a Cartesian product (for short, grid) of two sets of n real numbers. First, we prove that every such grid contains a convex polygon with $Omega$(log n) vertices and that this
In the MINIMUM CONVEX COVER (MCC) problem, we are given a simple polygon $mathcal P$ and an integer $k$, and the question is if there exist $k$ convex polygons whose union is $mathcal P$. It is known that MCC is $mathsf{NP}$-hard [Culberson & Reckhow
We provide exact and approximation methods for solving a geometric relaxation of the Traveling Salesman Problem (TSP) that occurs in curve reconstruction: for a given set of vertices in the plane, the problem Minimum Perimeter Polygon (MPP) asks for