ﻻ يوجد ملخص باللغة العربية
We study comparison properties in the category Cu aiming to lift results to the C*-algebraic setting. We introduce a new comparison property and relate it to both the CFP and $omega$-comparison. We show differences of all properties by providing examples, which suggest that the corona factorization property for C*-algebras might allow for both finite and infinite projections. In addition, we show that R{o}rdams simple, nuclear C*-algebra with a finite and an infinite projection does not have the CFP.
We construct a functor that maps $C^*$-correspondences to their Cuntz-Pimsner algebras. The objects in our domain category are $C^*$-correspondences, and the morphisms are the isomorphism classes of $C^*$-correspondences satisfying certain conditions
We construct a functor that maps $C^*$-correspondences to their Cuntz-Pimsner algebras. The objects in our domain category are $C^*$-correspondences, and the morphisms are the isomorphism classes of $C^*$-correspondences satisfying certain conditions
We establish exact sequences in $KK$-theory for graded relative Cuntz-Pimsner algebras associated to nondegenerate $C^*$-correspondences. We use this to calculate the graded $K$-theory and $K$-homology of relative Cuntz-Krieger algebras of directed g
Motivated by the theory of Cuntz-Krieger algebras we define and study $ C^ast $-algebras associated to directed quantum graphs. For classical graphs the $ C^ast $-algebras obtained this way can be viewed as free analogues of Cuntz-Krieger algebras, a
It is shown that the Cuntz semigroup of a space with dimension at most two, and with second cohomology of its compact subsets equal to zero, is isomorphic to the ordered semigroup of lower semicontinuous functions on the space with values in the natu