ﻻ يوجد ملخص باللغة العربية
We have carried out a multi-band photometric monitoring of the close visual binary GJ3039, consisting of a M4 primary and a fainter secondary component, and likely member of the young stellar association $beta$ Pictoris (24-Myr old). From our analysis we found that both components are photometric variables and, for the first time, we detected two micro-flare events. We measured from periodogram analysis of the photometric time series two rotation periods P = 3.355d and P = 0.925d, that we could attribute to the brighter GJ3039A and the fainter GJ3039B components, respectively. A comparison of these rotation periods with the period distribution of other $beta$ Pictoris members further supports that GJ3039A is a member of this association. We find that also GJ3039B could be a member, but the infrared magnitude differences between the two components taken from the literature and the photometric variability, which is found to be comparable in both stars, suggest that GJ3039B could be a foreground star physically unbound to the primary A component.
New photometric observations of the hierarchical eclipsing TY CrA system were taken in the optical with VYSOS6 and in the near-IR with SOFI and REMIR. They are the first observations showing the deep eclipse minimum of the pre-main sequence secondary
Broad emission lines in quasars enable us to resolve structure and kinematics of the broad line emitting region (BLR) thought to in- volve an accretion disk feeding a supermassive black hole. Interpretation of broad line measures within the 4DE1 form
$^{13}$CO(J=2--1) and C$^{18}$O(J=2--1) observations of the molecular cloud G285.90+4.53 (Cloud~16) in the Carina Flare supershell (GSH287+04-17) with the APEX telescope are presented. With an algorithm DENDROFIND we identify 51 fragments and compute
Planck data has not found the smoking gun of non-Gaussianity that would have necessitated consideration of inflationary models beyond the simplest canonical single field scenarios. This raises the important question of what these results do imply for
Gaia will provide parallaxes and proper motions with accuracy ranging from 10 to 1000 microarcsecond on up to one billion stars. Most of these will be disk stars: for an unreddened K giant at 6 kpc, it will measure the distance accurate to 15% and th