ﻻ يوجد ملخص باللغة العربية
In this article, we show the existence of large sets $operatorname{LS}_2[3](2,k,v)$ for infinitely many values of $k$ and $v$. The exact condition is $v geq 8$ and $0 leq k leq v$ such that for the remainders $bar{v}$ and $bar{k}$ of $v$ and $k$ modulo $6$ we have $2 leq bar{v} < bar{k} leq 5$. The proof is constructive and consists of two parts. First, we give a computer construction for an $operatorname{LS}_2[3](2,4,8)$, which is a partition of the set of all $4$-dimensional subspaces of an $8$-dimensional vector space over the binary field into three disjoint $2$-$(8, 4, 217)_2$ subspace designs. Together with the already known $operatorname{LS}_2[3](2,3,8)$, the application of a recursion method based on a decomposition of the Gra{ss}mannian into joins yields a construction for the claimed large sets.
In this article, three types of joins are introduced for subspaces of a vector space. Decompositions of the Gra{ss}mannian into joins are discussed. This framework admits a generalization of large set recursion methods for block designs to subspace d
Let $q$ be a prime power and $Vcong{mathbb F}_q^n$. A $t$-$(n,k,lambda)_q$ design, or simply a subspace design, is a pair ${mathcal D}=(V,{mathcal B})$, where ${mathcal B}$ is a subset of the set of all $k$-dimensional subspaces of $V$, with the prop
A generalization of forming derived and residual designs from $t$-designs to subspace designs is proposed. A $q$-analog of a theorem by Van Trung, van Leijenhorst and Driessen is proven, stating that if for some (not necessarily realizable) parameter
Rudolph (1967) introduced one-step majority logic decoding for linear codes derived from combinatorial designs. The decoder is easily realizable in hardware and requires that the dual code has to contain the blocks of so called geometric designs as c
The Assmus-Mattson theorem gives a way to identify block designs arising from codes. This result was broadened to matroids and weighted designs. In this work we present a further two-fold generalisation: first from matroids to polymatroids and also f