ﻻ يوجد ملخص باللغة العربية
In this paper, we propose an indoor localization system employing ordered sequence of access points (APs) based on received signal strength (RSS). Unlike existing indoor localization systems, our approach does not require any time-consuming and laborious site survey phase to characterize the radio signals in the environment. To be precise, we construct the fingerprint map by cutting the layouts of the interested area into regions with only the knowledge of positions of APs. This can be done offline within a second and has a potential for practical use. The localization is then achieved by matching the ordered AP-sequence to the ones in the fingerprint map. Different from traditional fingerprinting that employing all APs information, we use only selected APs to perform localization, due to the fact that, without site survey, the possibility in obtaining the correct AP sequence is lower if it involves more APs. Experimental results show that, the proposed system achieves localization accuracy < 5m with an accumulative density function (CDF) of 50% to 60% depending on the density of APs. Furthermore, we observe that, using all APs for localization might not achieve the best localization accuracy, e.g. in our case, 4 APs out of total 7 APs achieves the best performance. In practice, the number of APs used to perform localization should be a design parameter based on the placement of APs.
We study the problem of indoor localization using commodity WiFi channel state information (CSI) measurements. The accuracy of methods developed to address this problem is limited by the overall bandwidth used by the WiFi device as well as various ty
The proliferation of wireless localization technologies provides a promising future for serving human beings in indoor scenarios. Their applications include real-time tracking, activity recognition, health care, navigation, emergence detection, and t
Indoor positioning systems using visible light communication (VLC) have potential applications in smart buildings, for instance, in developing economical, easy-to-use, widely accessible positioning system based on light-emitting diodes. Thus using VL
We introduce WiCluster, a new machine learning (ML) approach for passive indoor positioning using radio frequency (RF) channel state information (CSI). WiCluster can predict both a zone-level position and a precise 2D or 3D position, without using an
Modeling human mobility has a wide range of applications from urban planning to simulations of disease spread. It is well known that humans spend 80% of their time indoors but modeling indoor human mobility is challenging due to three main reasons: (