ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin Hall effects in mesoscopic Pt films with high resistivity

110   0   0.0 ( 0 )
 نشر من قبل Chuan Qin
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The energy efficiency of the spin Hall effects (SHE) can be enhanced if the electrical conductivity is decreased without sacrificing the spin Hall conductivity. The resistivity of Pt films can be increased to 150-300 {mu}{Omega}*cm by mesoscopic lateral confinement, thereby decreasing the conductivity. The SHE and inverse spin Hall effects (ISHE) in these mesoscopic Pt films are explored at 10 K by using the nonlocal spin injection/detection method. All relevant physical quantities are determined in-situ on the same substrate, and a quantitative approach is developed to characterize all processes effectively. Extensive measurements with various Pt thickness values reveal an upper limit for the Pt spin diffusion length: {lambda}_pt<0.8 nm. The average product of {lambda}_pt and the Pt spin Hall angle {alpha}_H is substantial: {alpha}_H*{lambda}_pt=(0.142 +/- 0.040)nm for 4 nm thick Pt, though a gradual decrease is observed at larger Pt thickness. The results suggest enhanced spin Hall effects in resistive mesoscopic Pt films.



قيم البحث

اقرأ أيضاً

Spin accumulation generated by the anomalous Hall effects (AHE) in mesoscopic ferromagnetic Ni81Fe19 (permalloy or Py) films is detected electrically by a nonlocal method. The reciprocal phenomenon, inverse spin Hall effects (ISHE), can also be gener ated and detected all-electrically in the same structure. For accurate quantitative analysis, a series of nonlocal AHE/ISHE structures and supplementary structures are fabricated on each sample substrate to account for statistical variations and to accurately determine all essential physical parameters in-situ. By exploring Py thicknesses of 4 nm, 8 nm, and 12 nm, the Py spin diffusion length {lambda}_Py is found to be much shorter than the film thicknesses. The product of {lambda}_Py and the Py spin Hall angle {alpha}_SH is determined to be independent of thickness and resistivity: {alpha}_SH*{lambda}_Py= (0.066 +/- 0.009) nm at 5 K and (0.041 +/- 0.010) nm at 295 K. These values are comparable to those obtained from mesoscopic Pt films.
We report magnetoresistance measurements on thin Pt bars grown on epitaxial (001) and (111) CoFe2O4 (CFO) ferrimagnetic insulating films. The results can be described in terms of the recently discovered spin Hall magnetoresistance (SMR). The magnitud e of the SMR depends on the interface preparation conditions, being optimal when Pt/CFO samples are prepared in situ, in a single process. The spin-mixing interface conductance, the key parameter governing SMR and other relevant spin-dependent phenomena such as spin pumping or spin Seebeck effect, is found to be different depending on the crystallographic orientation of CFO, highlighting the role of the composition and density of magnetic ions at the interface on spin mixing.
We have studied the spin Hall magnetoresistance (SMR), the magnetoresistance within the plane transverse to the current flow, of Pt/Co bilayers. We find that the SMR increases with increasing Co thickness: the effective spin Hall angle for bilayers w ith thick Co exceeds the reported values of Pt when a conventional drift-diffusion model is used. An extended model including spin transport within the Co layer cannot account for the large SMR. To identify its origin, contributions from other sources are studied. For most bilayers, the SMR increases with decreasing temperature and increasing magnetic field, indicating that magnon-related effects in the Co layer play little role. Without the Pt layer, we do not observe the large SMR found for the Pt/Co bilayers with thick Co. Implementing the effect of the so-called interface magnetoresistance and the textured induced anisotropic scattering cannot account for the Co thickness dependent SMR. Since the large SMR is present for W/Co but its magnitude reduces in W/CoFeB, we infer its origin is associated with a particular property of Co.
153 - Thibaut Capron 2010
We have measured the low temperature electrical resistivity of Ag : Mn mesoscopic spin glasses prepared by ion implantation with a concentration of 700 ppm. As expected, we observe a clear maximum in the resistivity (T ) at a temperature in good agre ement with theoretical predictions. Moreover, we observe remanence effects at very weak magnetic fields for the resistivity below the freezing temperature Tsg: upon Field Cooling (fc), we observe clear deviations of (T ) as compared with the Zero Field Cooling (zfc); such deviations appear even for very small magnetic fields, typically in the Gauss range. This onset of remanence for very weak magnetic fields is reminiscent of the typical signature on magnetic susceptibility measurements of the spin glass transition for this generic glassy system.
Spin Hall effects have surged as promising phenomena for spin logics operations without ferromagnets. However, the magnitude of the detected electric signals at room temperature in metallic systems has been so far underwhelming. Here, we demonstrate a two-order of magnitude enhancement of the signal in monolayer graphene/Pt devices when compared to their fully metallic counterparts. The enhancement stems in part from efficient spin injection and the large resistivity of graphene but we also observe 100% spin absorption in Pt and find an unusually large effective spin Hall angle of up to 0.15. The large spin-to-charge conversion allows us to characterise spin precession in graphene under the presence of a magnetic field. Furthermore, by developing an analytical model based on the 1D diffusive spin-transport, we demonstrate that the effective spin-relaxation time in graphene can be accurately determined using the (inverse) spin Hall effect as a means of detection. This is a necessary step to gather full understanding of the consequences of spin absorption in spin Hall devices, which is known to suppress effective spin lifetimes in both metallic and graphene systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا