ﻻ يوجد ملخص باللغة العربية
We study several natural instances of the geometric hitting set problem for input consisting of sets of line segments (and rays, lines) having a small number of distinct slopes. These problems model path monitoring (e.g., on road networks) using the fewest sensors (the hitting points). We give approximation algorithms for cases including (i) lines of 3 slopes in the plane, (ii) vertical lines and horizontal segments, (iii) pairs of horizontal/vertical segments. We give hardness and hardness of approximation results for these problems. We prove that the hitting set problem for vertical lines and horizontal rays is polynomially solvable.
We study three covering problems in the plane. Our original motivation for these problems come from trajectory analysis. The first is to decide whether a given set of line segments can be covered by up to four unit-sized, axis-parallel squares. The s
We improve the running times of $O(1)$-approximation algorithms for the set cover problem in geometric settings, specifically, covering points by disks in the plane, or covering points by halfspaces in three dimensions. In the unweighted case, Agarwa
In this paper, we study two classic optimization problems: minimum geometric dominating set and set cover. Both the problems have been studied for different types of objects for a long time. These problems become APX-hard when the objects are axis-pa
We consider the problem of maintaining an approximate maximum independent set of geometric objects under insertions and deletions. We present data structures that maintain a constant-factor approximate maximum independent set for broad classes of f
We study geometric set cover problems in dynamic settings, allowing insertions and deletions of points and objects. We present the first dynamic data structure that can maintain an $O(1)$-approximation in sublinear update time for set cover for axis-