Utilizing an archived Suzaku data acquired on 2007 December 25 for 46 ks, X-ray spectroscopic properties of the dipping and eclipsing low-mass X-ray binary EXO 0748$-$676 were studied. At an assumed distance of 7.1 kpc, the data gave a persistent unabsorbed luminosity of $3.4times10^{36}$ erg cm$^{-2}$ s$^{-1}$ in 0.6 $-$ 55 keV. The source was in a relatively bright low/hard state, wherein the 0.6 $-$ 55 keV spectrum can be successfully explained by a double-seed Comptonization model, incorporating a common corona with an electron temperature of $sim13$ keV. The seed photons are thought to be supplied from both the neutron star surface, and a cooler truncated disk. Compared to a sample of non-dipping low-mass X-ray binaries in the low/hard state, the spectrum is subject to stronger Comptonization, with a relatively larger Comptonizing $y$-parameter of $sim1.4$ and a larger coronal optical depth of $sim5$. This result, when attributed to the high inclination of EXO 0748$-$676, suggests that the Comptonizing corona may elongate along the disk plane, and give a longer path for the seed photons when viewed from edge-on inclinations.