Matching universal behavior with potential models


الملخص بالإنكليزية

Two-, three-, and four-boson systems are studied close to the unitary limit using potential models constructed to reproduce the minimal information given by the two-body scattering length $a$ and the two-body binding energy or virtual state energy $E_2$. The particular path used to reach the unitary limit is given by varying the potential strength. In this way the energy spectrum in the three- and four-boson systems is computed. The lowest energy states show finite-range effects absorbed in the construction of level functions that can be used to study real systems. Higher energy levels are free from finite-range effects, therefore the corresponding level functions tend to the zero-range universal function. Using this property a zero-range equation for the four-boson system is proposed and the four-boson universal function is computed.

تحميل البحث