ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient n-type Doping in Epitaxial Graphene through Strong Lateral Orbital Hybridization of Ti Adsorbate

110   0   0.0 ( 0 )
 نشر من قبل Chung Lin Wu
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In recent years, various doping methods for epitaxial graphene have been demonstrated through atom substitution and adsorption. Here we observe by angle-resolved photoemission spectroscopy (ARPES) a coupling-induced Dirac cone renormalization when depositing small amounts of Ti onto epitaxial graphene on SiC. We obtain a remarkably high doping efficiency and a readily tunable carrier velocity simply by changing the amount of deposited Ti. First-principles theoretical calculations show that a strong lateral (non-vertical) orbital coupling leads to an efficient doping of graphene by hybridizing the 2pz orbital of graphene and the 3d orbitals of the Ti adsorbate, which attached on graphene without creating any trap/scattering states. This Ti-induced hybridization is adsorbate-specific and has major consequences for efficient doping as well as applications towards adsorbate-induced modification of carrier transport in graphene.



قيم البحث

اقرأ أيضاً

The incommensurate 30$^{circ}$ twisted bilayer graphene possesses both relativistic Dirac fermions and quasiperiodicity with 12-fold rotational symmetry arising from the interlayer interaction [Ahn et al., Science textbf{361}, 782 (2018) and Yao et a l., Proc. Natl. Acad. Sci. textbf{115}, 6928 (2018)]. Understanding how the interlayer states interact with each other is of vital importance for identifying and subsequently engineering the quasicrystalline order for the applications in future electronics and optoelectronics. Herein, via symmetry and group representation theory we unravel an interlayer hybridization selection rule for $D_{6d}$ bilayer consisting of two $C_{6v}$ monolayers no matter the system size, i.e., only the states from two $C_{6v}$ subsystems with the same irreducible representations are allowed to be hybridized with each other. The hybridization shows two categories including the equivalent and non-equivalent hybridizations with corresponding 12-fold symmetrical and 6-fold symmetrical antibonding (bonding) states, which are respectively generated from $A_1+A_1$, $A_2+A_2$, $E_1+E_1$, and $E_2+E_2$ four paring states and $B_1+B_1$ and $B_2+B_2$ two paring states. With the help of $C_6$ and $sigma_x$ symmetry operators, calculations on the hybridization matrix elements verify the characteristic of the zero non-diagonal and nonzero diagonal patterns required by the hybridization selection rule. In reciprocal space, a vertical electric field breaks the 12-fold symmetry of originally resonant quasicrystalline states and acts as a polarizer allowing the hybridizations from two $E_1$, $E_2$ and $B_2$ paring states but blocking others. Our theoretical framework also paves a way for revealing the interlayer hybridization for bilayer system coupled by the van der Waals interaction.
Graphene multilayers are grown epitaxially on single crystal silicon carbide. This system is composed of several graphene layers of which the first layer is electron doped due to the built-in electric field and the other layers are essentially undope d. Unlike graphite the charge carriers show Dirac particle properties (i.e. an anomalous Berrys phase, weak anti-localization and square root field dependence of the Landau level energies). Epitaxial graphene shows quasi-ballistic transport and long coherence lengths; properties which may persists above cryogenic temperatures. Paradoxically, in contrast to exfoliated graphene, the quantum Hall effect is not observed in high mobility epitaxial graphene. It appears that the effect is suppressed due to absence of localized states in the bulk of the material.Epitaxial graphene can be patterned using standard lithography methods and characterized using a wide array of techniques. These favorable features indicate that interconnected room temperature ballistic devices may be feasible for low dissipation high-speed nanoelectronics.
Oxygen packaging in transition metal oxides determines the metal-oxygen hybridization and electronic occupation at metal orbitals. Strontium vanadate (SrVO$_3$), having a single electron in a $3d$ orbital, is thought to be the simplest example of str ongly correlated metallic oxides. Here, we determine the effects of epitaxial strain on the electronic properties of SrVO$_3$ thin films, where the metal-oxide sublattice is corner-connected. Using x-ray absorption and x-ray linear dichroism at the V $L_{2,3}$ and O $K$-edges, it is observed that tensile or compressive epitaxial strain change the hierarchy of orbitals within the $t_{2g}$ and $e_g$ manifolds. Data show a remarkable $2p-3d$ hybridization, as well as a strain-induced reordering of the V $3d$($t_{2g}$, $e_g$) orbitals. The latter is itself accompanied by a consequent change of hybridization that modulates the hybrid $pi^*$ and $sigma^*$ orbitals and the carrier population at the metal ions, challenging a rigid band picture.
Graphene oxide (GO) flakes have been deposited to bridge the gap between two epitaxial graphene electrodes to produce all-graphene devices. Electrical measurements indicate the presence of Schottky barriers (SB) at the graphene/graphene oxide junctio ns, as a consequence of the band-gap in GO. The barrier height is found to be about 0.7 eV, and is reduced after annealing at 180 $^circ$C, implying that the gap can be tuned by changing the degree of oxidation. A lower limit of the GO mobility was found to be 850 cm$^2$/Vs, rivaling silicon. {it In situ} local oxidation of patterned epitaxial graphene has been achieved.
We propose a mechanism to control the interaction between adsorbates on graphene. The interaction between a pair of adsorbates---the change in adsorption energy of one adsorbate in the presence of another---is dominated by the interaction mediated by graphenes pi-electrons and has two distinct regimes. Ab initio density functional, numerical tight-binding, and analytical calculations are used to develop the theory. We demonstrate that the interaction can be tuned in a wide range by adjusting the adsorbate-graphene bonding or the chemical potential.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا