ﻻ يوجد ملخص باللغة العربية
We revisit the sgoldstino interpretation of the diphoton excess in the context of gauge mediation. While the bound on the gluino mass might seem to make the sgoldstino contribution to the diphoton excess unobservable, we show that the interpretation is viable in a thin, near critical region of the parameter space. This regime gives rise to drastic departures from the standard gauge mediation picture. While the fermion messengers lie in the (10-100) TeV range, some scalar messengers are significantly lighter and are responsible for the sgoldstino production and decay. Their effective coupling to the sgoldstino is correspondingly enhanced, and a non-perturbative regime is triggered when light and heavy messenger masses differ by a factor $sim4pi$. We also comment on the possible role of an R-axion and on the possibility to decouple the sfermions in this context.
We study kinematic distributions that may help characterise the recently observed excess in diphoton events at 750 GeV at the LHC Run 2. Several scenarios are considered, including spin-0 and spin-2 750 GeV resonances that decay directly into photon
We study scalar bubble collisions in first-order phase transitions focusing on the relativistic limit. We propose trapping equation which describes the wall behavior after collision, and test it with numerical simulations in several setups. We also e
We propose that the SU(2) x SU(2) x U(1) (aka G221) models could provide us a 750 GeV scalar resonance that may account for the diphoton excess observed at the LHC while satisfying present collider constraints. The neutral component of the $SU(2)_R$
We interpret the di-photon excess recently reported by the ATLAS and CMS collaborations as a new resonance arising from the sgoldstino scalar, which is the superpartner of the Goldstone mode of spontaneous supersymmetry breaking, the goldstino. The s
We propose an NMSSM scenario that can explain the excess in the diphoton spectrum at 750 GeV recently observed by ATLAS and CMS. We show that in a certain limit with a very light pseudoscalar one can reproduce the experimental results without invokin