ﻻ يوجد ملخص باللغة العربية
The possibility to build a SiPM-readout muon detector (SiRO), using plastic scintillators with optical fibers as sensitive volume and readout by SiPM photo-diodes, is investigated. SiRO shall be used for tracking cosmic muons based on amplitude discrimination. The detector concept foresees a stack of 6 active layers, grouped in 3 sandwiches for determining the muon trajectories through 3 planes. After investigating the characteristics of the photodiodes, tests have been performed using two detection modules, each being composed from a plastic scintillator sheet, $100 times 25 times 1,$cm$^{3}$, with 12 parallel, equidistant ditches; each ditch filled with an optical fiber of $1.5,$mm thickness and always two fibers connected to form a channel. The attenuation of the light response along the optical fiber and across the channels have been tested. The measurements of the incident muons based on the input amplitude discrimination indicate that this procedure is not efficient and therefore not sufficient, as only about 30% of the measured events could be used in the reconstruction of the muon trajectories. Based on the studies presented in this paper, the layout used for building the SiRO detector will be changed as well as the analog acquisition technique will be replaced by a digital one.
In the case of underground experiments for neutrino physics or rare event searches, the background caused by cosmic muons contributes significantly and therefore must be identified and rejected. We proposed and optimized a new detector using liquid s
The powerful muon and tracker systems of the CMS detector together with dedicated reconstruction software allow precise and efficient measurement of muon tracks originating from proton-proton collisions. The standard muon reconstruction algorithms, h
Two widely used methods of determining the etch-rate ratio in poly-ethylene terephthalate (PET) nuclear track detector are compared. Their application in different regimes of ion$textquoteright$s energy loss is investigated. A new calibration curve for PET is also presented.
The Jagiellonian Positron Emission Tomograph (J-PET) is a novel de- vice being developed at Jagiellonian University in Krakow, Poland based on or- ganic scintillators. J-PET is an axially symmetric and high acceptance scanner that can be used as a mu
ArgoNeuT, or Argon Neutrino Test, is a 170 liter liquid argon time projection chamber designed to collect neutrino interactions from the NuMI beam at Fermi National Accelerator Laboratory. ArgoNeuT operated in the NuMI low-energy beam line directly u