ترغب بنشر مسار تعليمي؟ اضغط هنا

Set Containment Join Revisited

119   0   0.0 ( 0 )
 نشر من قبل Panagiotis Bouros
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Given two collections of set objects $R$ and $S$, the $R bowtie_{subseteq} S$ set containment join returns all object pairs $(r, s) in R times S$ such that $r subseteq s$. Besides being a basic operator in all modern data management systems with a wide range of applications, the join can be used to evaluate complex SQL queries based on relational division and as a module of data mining algorithms. The state-of-the-art algorithm for set containment joins (PRETTI) builds an inverted index on the right-hand collection $S$ and a prefix tree on the left-hand collection $R$ that groups set objects with common prefixes and thus, avoids redundant processing. In this paper, we present a framework which improves PRETTI in two directions. First, we limit the prefix tree construction by proposing an adaptive methodology based on a cost model; this way, we can greatly reduce the space and time cost of the join. Second, we partition the objects of each collection based on their first contained item, assuming that the set objects are internally sorted. We show that we can process the partitions and evaluate the join while building the prefix tree and the inverted index progressively. This allows us to significantly reduce not only the join cost, but also the maximum memory requirements during the join. An experimental evaluation using both real and synthetic datasets shows that our framework outperforms PRETTI by a wide margin.



قيم البحث

اقرأ أيضاً

We introduce and study the problem of computing the similarity self-join in a streaming context (SSSJ), where the input is an unbounded stream of items arriving continuously. The goal is to find all pairs of items in the stream whose similarity is gr eater than a given threshold. The simplest formulation of the problem requires unbounded memory, and thus, it is intractable. To make the problem feasible, we introduce the notion of time-dependent similarity: the similarity of two items decreases with the difference in their arrival time. By leveraging the properties of this time-dependent similarity function, we design two algorithmic frameworks to solve the sssj problem. The first one, MiniBatch (MB), uses existing index-based filtering techniques for the static version of the problem, and combines them in a pipeline. The second framework, Streaming (STR), adds time filtering to the existing indexes, and integrates new time-based bounds deeply in the working of the algorithms. We also introduce a new indexing technique (L2), which is based on an existing state-of-the-art indexing technique (L2AP), but is optimized for the streaming case. Extensive experiments show that the STR algorithm, when instantiated with the L2 index, is the most scalable option across a wide array of datasets and parameters.
Similarity join, which can find similar objects (e.g., products, names, addresses) across different sources, is powerful in dealing with variety in big data, especially web data. Threshold-driven similarity join, which has been extensively studied in the past, assumes that a user is able to specify a similarity threshold, and then focuses on how to efficiently return the object pairs whose similarities pass the threshold. We argue that the assumption about a well set similarity threshold may not be valid for two reasons. The optimal thresholds for different similarity join tasks may vary a lot. Moreover, the end-to-end time spent on similarity join is likely to be dominated by a back-and-forth threshold-tuning process. In response, we propose preference-driven similarity join. The key idea is to provide several result-set preferences, rather than a range of thresholds, for a user to choose from. Intuitively, a result-set preference can be considered as an objective function to capture a users preference on a similarity join result. Once a preference is chosen, we automatically compute the similarity join result optimizing the preference objective. As the proof of concept, we devise two useful preferences and propose a novel preference-driven similarity join framework coupled with effective optimization techniques. Our approaches are evaluated on four real-world web datasets from a diverse range of application scenarios. The experiments show that preference-driven similarity join can achieve high-quality results without a tedious threshold-tuning process.
176 - Hadj Mahboubi 2008
XML data warehouses form an interesting basis for decision-support applications that exploit complex data. However, native-XML database management systems (DBMSs) currently bear limited performances and it is necessary to research for ways to optimiz e them. In this paper, we propose a new join index that is specifically adapted to the multidimensional architecture of XML warehouses. It eliminates join operations while preserving the information contained in the original warehouse. A theoretical study and experimental results demonstrate the efficiency of our join index. They also show that native XML DBMSs can compete with XML-compatible, relational DBMSs when warehousing and analyzing XML data.
In stream processing, stream join is one of the critical sources of performance bottlenecks. The sliding-window-based stream join provides a precise result but consumes considerable computational resources. The current solutions lack support for the join predicates on large windows. These algorithms and their hardware accelerators are either limited to equi-join or use a nested loop join to process all the requests. In this paper, we present a new algorithm called PanJoin which has high throughput on large windows and supports both equi-join and non-equi-join. PanJoin implements three new data structures to reduce computations during the probing phase of stream join. We also implement the most hardware-friendly data structure, called BI-Sort, on FPGA. Our evaluation shows that PanJoin outperforms several recently proposed stream join methods by more than 1000x, and it also adapts well to highly skewed data.
We propose the algorithms for performing multiway joins using a new type of coarse grain reconfigurable hardware accelerator~-- ``Plasticine~-- that, compared with other accelerators, emphasizes high compute capability and high on-chip communication bandwidth. Joining three or more relations in a single step, i.e. multiway join, is efficient when the join of any two relations yields too large an intermediate relation. We show at least 200X speedup for a sequence of binary hash joins execution on Plasticine over CPU. We further show that in some realistic cases, a Plasticine-like accelerator can make 3-way joins more efficient than a cascade of binary hash joins on the same hardware, by a factor of up to 45X.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا