ترغب بنشر مسار تعليمي؟ اضغط هنا

A survey of HI gas toward the Andromeda Galaxy

214   0   0.0 ( 0 )
 نشر من قبل Juergen Kerp
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. Kerp




اسأل ChatGPT حول البحث

The subsequent coalescence of low--mass halos over cosmic time is thought to be the major formation channel of massive spiral galaxies like the Milky Way and the Andromeda Galaxy (M31). The gaseous halo of a massive galaxy is considered to be the reservoir of baryonic matter persistently fueling the star formation in the disk. Because of its proximity, M31 is the ideal object for studying the structure of the halo gas in great detail. Using the latest neutral atomic hydrogen (HI) data of the Effelsberg-Bonn HI Survey (EBHIS) allows comprising a comprehensive inventory of gas associated with M31. The primary aim is to differentiate between physical structures belonging to the Milky Way Galaxy and M31 and accordingly to test the presence of a M31 neutral gaseous halo. Analyzing the spatially fully sampled EBHIS data makes it feasible to trace coherent HI structures in space and radial velocity. To disentangle Milky Way and M31 HI emission we use a new approach, along with the traditional path of setting an upper radial velocity limit, by calculating a difference second moment map. We argue that M31s disk is physically connected to an asymmetric HI halo of tens of kpc size, the M31 cloud. We confirm the presence of a coherent low-velocity HI filament located in between M31 and M33 aligned at the sky with the clouds at systemic velocity. The physical parameters of the HI filament are comparable to those of the HI clouds at systemic velocity. We also detected an irregularly shaped HI cloud that is is positionally located close to but offset from the stellar body of And XIX.



قيم البحث

اقرأ أيضاً

The study of 21cm line observations of atomic hydrogen allows detailed insight into the kinematics of spiral galaxies. We use sensitive high-resolution VLA data from The HI Nearby Galaxy Survey (THINGS) to search for radial gas flows primarily in the outer parts (up to $3times r_{25}$) of ten nearby spiral galaxies. Inflows are expected to replenish the gas reservoir and fuel star formation under the assumption that galaxies evolve approximately in steady state. We carry out a detailed investigation of existing tilted ring fitting schemes and discover systematics that can hamper their ability to detect signatures of radial flows. We develop a new Fourier decomposition scheme that fits for rotational and radial velocities and simultaneously determines position angle and inclination as a function of radius. Using synthetic velocity fields we show that our novel fitting scheme is less prone to such systematic errors and that it is well suited to detect radial inflows in disks. We apply our fitting scheme to ten THINGS galaxies and find clear indications of, at least partly previously unidentified, radial gas flows, in particular for NGC 2403 and NGC 3198 and to a lesser degree for NGC 7331, NGC 2903 and NGC 6946. The mass flow rates are of the same order but usually larger than the star formation rates. At least for these galaxies a scenario in which continuous mass accretion feeds star formation seems plausible. The other galaxies show a more complicated picture with either no clear inflow, outward motions or complex kinematic signatures.
160 - P.M.W. Kalberla , J. Kerp 2016
The local Galactic HI gas was found to contain cold neutral medium (CNM) filaments that are aligned with polarized dust emission. These filaments appear to be dominated by the magnetic field and in this case turbulence is expected to show distinct an isotropies. We use the Galactic Effelsberg--Bonn HI Survey (EBHIS) to derive 2D turbulence spectra for the HI distribution in direction to 3C196 and two more comparison fields. Prior to Fourier transform we apply a rotational symmetric 50% Tukey window to apodize the data. We derive average as well as position angle dependent power spectra. Anisotropies in the power distribution are defined as the ratio of the spectral power in orthogonal directions. We find strong anisotropies. For a narrow range in position angle, in direction perpendicular to the filaments and the magnetic field, the spectral power is on average more than an order of magnitude larger than parallel. In the most extreme case the anisotropy reaches locally a factor of 130. Anisotropies increase on average with spatial frequency as predicted by Goldreich and Sridhar, at the same time the Kolmogorov spectral index remains almost unchanged. The strongest anisotropies are observable for a narrow range in velocity and decay with a power law index close to --8/3, almost identical to the average isotropic spectral index of $-2.9 < gamma < -2.6$. HI filaments, associated with linear polarization structures in LOFAR observations in direction to 3C196, show turbulence spectra with marked anisotropies. Decaying anisotropies appear to indicate that we witness an ongoing shock passing the HI and affecting the observed Faraday depth.
68 - D.A. Leahy , J. Postma , M. Buick 2020
The Andromeda Galaxy (M31) has been observed with the UltraViolet Imaging Telescope (UVIT) instrument onboard the AstroSat Observatory. The M31 sky area was covered with 19 fields, in multiple UV filters per field, over the period of 2017 to 2019. Th e entire galaxy was observed in the FUV F148W filter, and more than half observed in the NUV filters. A new calibration and data processing is described which improves the astrometry and photometry of the UVIT data. The high spatial resolution of UVIT ($simeq$1 arcsec) and new astrometry calibration ($simeq$0.2 arcsec) allow identification of UVIT sources with stars, star clusters, X-ray sources, and other source types within M31 to a much better level than previously possible. We present new results from matching UVIT sources with stars measured as part of the Pan-chromatic Hubble Andromeda Treasury project in M31.
224 - A. Loni 2021
We present the first interferometric blind HI survey of the Fornax galaxy cluster, which covers an area of 15 deg$^2$ out to the cluster $R_{vir}$. The survey has a resolution of 67x95 and 6.6 km$s^{-1}$ with a 3$sigma$ sensitivity of N(HI)~2x10$^{19 }$ cm$^{-2}$ and MHI 2x10$^7$ M$_odot$. We detect 16 galaxies out of 200 spectroscopically confirmed Fornax cluster members. The detections cover ~3 orders of magnitude in HI mass, from 8x10$^6$ to 1.5x10$^{10}$ M$_odot$. They avoid the central, virialised region of the cluster both on the sky and in projected phase-space, showing that they are recent arrivals and that, in Fornax, HI is lost within a crossing time, ~2 Gyr. Half of these galaxies exhibit a disturbed HI morphology, including several cases of asymmetries, tails, offsets between HI and optical centres, and a case of a truncated HI disc suggesting that they have been interacting within or on their way to Fornax. Our HI detections are HI-poorer and form stars at a lower rate than non-cluster galaxies in the same $M_star$ range. Low mass galaxies are more strongly affected throughout their infall towards the cluster. The MHI/$M_star$ ratio of Fornax galaxies is comparable to that in the Virgo cluster. At fixed $M_star$, our HI detections follow the non-cluster relation between MHI and the star formation rate, and we argue that this implies that so far they have lost their HI on a timescale $gtrsim$1-2 Gyr. Deeper inside the cluster HI removal is likely to proceed faster, as confirmed by a population of HI-undetected but H$_2$-detected star-forming galaxies. Based on ALMA data, we find a large scatter in H$_2$-to-HI mass ratio, with several galaxies showing an unusually high ratio that is probably caused by faster HI removal. We identify an HI-rich subgroup of possible interacting galaxies dominated by NGC 1365, where pre-processing is likey to have taken place.
74 - K. A. Lutz 2018
By analysing a sample of galaxies selected from the HI Parkes All Sky Survey (HIPASS) to contain more than 2.5 times their expected HI content based on their optical properties, we investigate what drives these HI eXtreme (HIX) galaxies to be so HI-r ich. We model the HI kinematics with the Tilted Ring Fitting Code TiRiFiC and compare the observed HIX galaxies to a control sample of galaxies from HIPASS as well as simulated galaxies built with the semi-analytic model Dark Sage. We find that (1) HI discs in HIX galaxies are more likely to be warped and more likely to host HI arms and tails than in the control galaxies, (2) the average HI and average stellar column density of HIX galaxies is comparable to the control sample, (3) HIX galaxies have higher HI and baryonic specific angular momenta than control galaxies, (4) most HIX galaxies live in higher-spin haloes than most control galaxies. These results suggest that HIX galaxies are HI-rich because they can support more HI against gravitational instability due to their high specific angular momentum. The majority of the HIX galaxies inherits their high specific angular momentum from their halo. The HI content of HIX galaxies might be further increased by gas-rich minor mergers. This paper is based on data obtained with the Australia Telescope Compact Array (ATCA) through the large program C 2705.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا