ﻻ يوجد ملخص باللغة العربية
We investigate the effect of on-site Coulomb repulsion $U$ on the band gap of the electrically gated bilayer graphene by employing coherent potential approximation in the paramagnetic state, based on an ionic two-layer Hubbard model. We find that, while either the on-site Coulomb repulsion $U$ or the external perpendicular electric field $E$ alone will favor a gapped state in the bilayer graphene, competition between them will surprisingly lead to a suppression of the gap amplitude. Our results can be applied to understand the discrepancies of gap size reported from optical and transport measurements, as well as the puzzling features observed in angular resolved photoemission spectroscopic study.
Phonon dispersions generically display non-analytic points, known as Kohn anomalies, due to electron-phonon interactions. We analyze this phenomenon for a zone boundary phonon in undoped graphene. When electron-electron interactions with coupling con
We explore the possibility of a Berezinskii-Kosterlitz-Thouless-like critical phase for the charge degrees of freedom in the intermediate-temperature regime between the charge-ordered and disordered phases in two-dimensional systems with competing sh
We address the optical conductivity of undoped bilayer graphene in the presence of a finite bias voltage at finite temperature. The effects of gap parameter and stacking type on optical conductivity are discussed in the context of tight binding model
We revisit the effect of local interactions on the quadratic band touching (QBT) of Bernal stacked bilayer graphene models using renormalization group (RG) arguments and quantum Monte Carlo simulations of the Hubbard model. We present an RG argument
Coulomb drag between parallel quantum wells provides a uniquely sensitive measurement of electron correlations since the drag response depends on interactions only. Recently it has been demonstrated that a new regime of strong interactions can be acc