ﻻ يوجد ملخص باللغة العربية
We use Rabi spectroscopy to explore the low-energy excitation spectrum of a finite-temperature Bose gas of rubidium atoms across the phase transition to a Bose-Einstein condensate (BEC). To record this spectrum, we coherently drive the atomic population between two spin states. A small relative displacement of the spin-specific trapping potentials enables sideband transitions between different motional states. The intrinsic non-linearity of the motional spectrum, mainly originating from two-body interactions, makes it possible to resolve and address individual excitation lines. Together with sensitive atom-counting, this constitutes a feasible technique to count single excited atoms of a BEC and to determine the temperature of nearly pure condensates. As an example, we show that for a nearly pure BEC of N = 800 atoms the first excited state has a population of less than 5 atoms, corresponding to an upper bound on the temperature of 30 nK.
We propose and investigate a pump-probe spectroscopy scheme to unveil the time-resolved dynamics of fermionic or bosonic impurities immersed in a harmonically trapped Bose-Einstein condensate. In this scheme a pump pulse initially transfers the impur
We analyze the optomechanics of an atomic Bose-Einstein condensate interacting with the optical lattice inside a laser-pumped optical cavity and subject to a uniform bias force such as gravity. An atomic wave packet in a tilted lattice undergoes Bloc
The static and dynamic properties of many-body quantum systems are often well described by collective excitations, known as quasiparticles. Engineered quantum systems offer the opportunity to study such emergent phenomena in a precisely controlled an
We propose a quantum simulation of the quantum Rabi model in an atomic quantum dot, which is a single atom in a tight optical trap coupled to the quasiparticle modes of a superfluid Bose-Einstein condensate. This widely tunable setup allows to simula
Quantum simulation of spin models can provide insight into complex problems that are difficult or impossible to study with classical computers. Trapped ions are an established platform for quantum simulation, but only systems with fewer than 20 ions