ﻻ يوجد ملخص باللغة العربية
In this thesis, we study the breakdown of the Fermi liquid state in cuprate superconductors using the renormalization group (RG). We seek to extend earlier work on the crossover from the Fermi liquid state to the pseudo gap phase based on RG flows in the so-called saddle point regime. Progress in the derivation of effective models for the conjectured spin liquid state has been hindered, by the difficulties involved in solving the strong coupling low energy Hamiltonian. We tackle the problem by introducing an orthogonal wave packet basis, the so-called Wilson-Wannier (WW) basis, that can be used to interpolate between the momentum space and the real space descriptions. We show how to combine the WW basis with the RG, such that the RG is used to eliminate high-energy degrees of freedom, and the remaining strongly correlated system is solved approximately in the WW basis. We exemplify the approach for different one-dimensional model systems, and find good qualitative agreement with exact solutions even for very simple approximations. Finally, we reinvestigate the saddle point regime of the two-dimensional Hubbard model. We show that the anti-nodal states are driven to an insulating spin-liquid state with strong singlet pairing correlations, thus corroborating earlier conjectures.
We consider the algebra $dot{mathfrak H}(mathcal L)$ of inner-limit derivations over the ${rm GICAR}$ algebra of a fermion gas populating an aperiodic Delone set $mathcal L$. Under standard physical assumptions such as finite interaction range, Galil
We propose a Real-Space Gutzwiller variational approach and apply it to a system of repulsively interacting ultracold fermions with spin 1/2 trapped in an optical lattice with a harmonic confinement. Using the Real-Space Gutzwiller variational approa
We study the nature of many-body eigenstates of a system of interacting chiral spinless fermions on a ring. We find a coexistence of fermionic and bosonic types of eigenstates in parts of the many-body spectrum. Some bosonic eigenstates, native to th
We study in this paper the properties of a gas of fermions interacting {em via} a scalar potential $v(q)=4pi{e}^2/q^2$ for $q<Lambda<<k_F$ at dimensions larger than one, where $Lambda$ is a high momentum cutoff and $k_F$ is the fermi wave vector. In
We generalize the recently introduced dual fermion (DF) formalism for disordered fermion systems by including the effect of interactions. For an interacting disordered system the contributions to the full vertex function have to be separated into ela